Knight Foundation School of Computing and Information Sciences

Course Title: Structured Computer Organization

Date: 2/12/2018

Course Number: CDA 4101

Number of Credits: 3

Subject Area: Computer Organization	Subject Area Coordinator:	
	Dong Chen	
	email: dochen@cs.fiu.edu	
Catalog Description: Covers the levels of o	rganization in a computer: Design of	
memory, buses, ALU, CPU; design of micro	program. Covers virtual memory, I/O,	
multiple processes, CISC, RISC and parallel	architectures.	
Textbook: Structured Computer Organization	on, 6 th Edition, Andrew S. Tanenbaum	
Prentice Hall (ISBN: 0-13-291652-5)		
References: Computer Organization and Design: The Hardware/Software Interface,		
3 rd Edition		
David A. Patterson, John L. Hennessy		
Morgan Kaufmann (ISBN: 0123706068)		
Prerequisites Courses: CDA 3103, COP 3337 and MAD 2104 or COT 3100		
Corequisites Courses: None		

Type: Required for CS Major

Prerequisites Topics:

- Digital logic and Boolean algebra
- Machine level representation of data
- Assembly level machine organization
- Fundamental data structures

Course Outcomes:

- 1. Master the design of advanced combinational circuits
- 2. Master the design of memory and the ALU.
- 3. Master control unit design and RISC architectures
- 4. Be familiar with cache architectures, branch predictions, scheduling of multiple instruction issue and flow control
- 5. Be exposed to parallel architectures, including configurations, shared-memory, message passing, and taxonomy.

Relationship between Course Outcomes and Program Outcomes

BS in CS: Program Outcomes	Course Outcomes
a) Demonstrate proficiency in the foundation areas of Computer Science including mathematics, discrete structures, logic and the theory of algorithms	1
b) Demonstrate proficiency in various areas of Computer Science including data structures and algorithms, concepts of programming languages and computer systems.	1, 2, 3, 4, 5
c) Demonstrate proficiency in problem solving and application of software engineering techniques	1
 d) Demonstrate mastery of at least one modern programming language and proficiency in at least one other. 	
e) Demonstrate understanding of the social and ethical concerns of the practicing computer scientist.	
 f) Demonstrate the ability to work cooperatively in teams. 	
g) Demonstrate effective communication skills.	

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: https://abet.cs.fiu.edu/csassessment/

Outline

Outime				
	Торіс	Number of	Outcome	
		Lecture Hours		
Intro	oduction to architecture	6	1,3,4	
0	Hierarchy of virtual machines			
0	von Neumann architecture			
0	CPU instruction execution cycle			
0	Overview of parallel architectures			
0	I/O devices, RAID			
0	Review of basic logic circuit design			
Digi	tal logic: Design of	14	1,3	
0	Multiplexer, demultiplexer, encoder,			
	decoder			
0	Arithmetic Logic Unit, Shifter			
0	Latch, flip-flop, register, memory			
	organization			
0	Bus protocols, arbitration, DMA			
0	Data path, control unit			
0	Microprogram			
• Perf	ormance enhancement	9	2	
0	Instruction prefetch			
0	Pipelining, pipeline hazards			
0	Cache architecture			
0	Branch prediction			
0	Dynamic scheduling of instructions			
0	Speculative execution	7	2.4	
	ruction set architecture	7	3,4	
0	CISC vs RISC			
0	RISC Register file			
0	Expanding opcode			
0	Stack addressing mode Flow control			
0		3	15	
	anced architecture	3	4,5	
0	Taxonomy of parallel architectures			
0	Exposure to shared memory			

Course Outcomes Emphasized in Laboratory Projects / Assignments

	Outcome	Number of Weeks
1	Microprogram design	3
	Outcomes: 1,3	
2	Complex microprogram design	3
	Outcomes: 1,3	

Oral and Written Communication

No significant coverage

Written Reports		Oral Pres	sentations
Number	Approx. Number	Number	Approx. Time for
Required	of pages	Required	each
0	0	0	0

Social and Ethical Implications of Computing Topics

No significant coverage

Торіс	Class time	student performance measures	

Approximate number of credit hours devoted to fundamental CS topics

Fundamental CS Area	Core Hours	Advanced Hours
Algorithms:		
Software Design:		
Computer Organization and		
Architecture:	3.0	
Data Structures:		
Concepts of Programming		
Languages		

Theoretical Contents

Topic Class time		
Boolean algebra	1.0	

Problem Analysis Experiences

1. Instruction set analysis

Solution Design Experiences

- 1. Digital circuit design
- 2. Microprogram design

The Coverage of Knowledge Units within Computer Science Body of Knowledge¹

Knowledge Unit	Торіс	Lecture Hours
<u>AR4</u>	Storage systems, coding, data integrity,	6
	memory organization, latency, cycle time,	
	cache memories	
<u>AR5</u>	I/O fundamentals, external storage, RAID	6
	architectures, bus protocols, bus arbitration,	
	DMA	
<u>AR6</u>	Implementation of simple datapath, control	14
	unit, pipelining, instruction level parallelism	
<u>AR7</u>	SIMD, MIMD, VLIW, interconnection	5
	networks, shared memory systems, cache	
	coherence	
<u>AR8</u>	Superscalar, superpipe lining, branch	8
	prediction, prefetching, speculative execution,	
	multiple instruction issue	

¹See <u>https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf</u> for a description of Computer Science Knowledge units