School of Computer Science

Course Title: Fundamentals of Computer Systems

Date: 10/30/03

Course Number: COP-3402

Number of Credits: 3

| Subject Area: Computer Systems | Subject Area Coordinator: Masoud Sadjadi
email: sadjadi@cis.fiu.edu |
|--------------------------------|--------------------------------|

Catalog Description:

Yale N. Patt, Sanjay J. Patel

References:

Prerequisites Courses: COP-2210 or equivalent

Corequisites Courses: MAD 2104

Type: Required

Prerequisites Topics:
- High level programming language constructs
- Function call/return
- Parameters of a function(method)

Course Outcomes:
1. Master the representations of numeric and character data
2. Master the implementation of some basic combinational circuits, registers and memories
3. Be familiar with the data path of a simple von Neumann architecture and its relation to the instruction execution cycle
4. Master simple machine and assembly language programming
5. Master the implementation of high-level language constructs in lower levels: selection, iteration, function call/return
School of Computer Science
COP-3402
Fundamentals of Computer Systems

Outline

<table>
<thead>
<tr>
<th>Topic</th>
<th>Number of Lecture Hours</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| • Machine level representation
 - Numeric data representation
 - Signed & unsigned representation
 - Fixed- and floating-point systems
 - Integer arithmetic
 - Boolean operations | 8 | 1 |
| • Digital logic
 - Fundamental building blocks (logic gates, combinational circuits)
 - Von Neumann model
 - Instruction execution cycle | 8 | 2,3 |
| • Assembly level machine organization
 - Instruction sets and types
 - Assembly language programming
 - Addressing modes
 - Subroutines and system routines
 - I/O and interrupts
 - Bit level manipulation
 - Assembly process and linking | 14 | 4,5 |
| • Introduction to architecture
 - Hierarchy of virtual machines
 - Interpretation and translation
 - Simple machine architecture | 8 | 3 |
School of Computer Science
COP-3402
Fundamentals of Computer Systems

Course Outcomes Emphasized in Laboratory Projects / Assignments

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data representation</td>
<td>1</td>
</tr>
<tr>
<td>Digital circuit design</td>
<td>2</td>
</tr>
<tr>
<td>Architecture concepts</td>
<td>2</td>
</tr>
<tr>
<td>Machine language programming</td>
<td>2</td>
</tr>
<tr>
<td>Assembly language programming</td>
<td>2</td>
</tr>
</tbody>
</table>

Oral and Written Communication:
No significant coverage

Social and Ethical Implications of Computing Topics
No significant coverage
Approximate number of credit hours devoted to fundamental CS topics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Core Hours</th>
<th>Advanced Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithms:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Design:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Organization and Architecture:</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Data Structures:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concepts of Programming Languages:</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Theoretical Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Class time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean algebra</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Problem Analysis Experiences

Implementation of high level programming language constructs in low level languages

Solution Design Experiences

1. Digital circuit design
2. Assembly language programming
The Coverage of Knowledge Units within Computer Science Body of Knowledge

<table>
<thead>
<tr>
<th>Knowledge Unit</th>
<th>Topic</th>
<th>Lecture Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL2</td>
<td>Virtual machine, hierarchy of virtual machines, intermediate languages</td>
<td>8</td>
</tr>
<tr>
<td>AR1</td>
<td>History of computer architecture, fundamental logic circuits, gate delays</td>
<td>8</td>
</tr>
<tr>
<td>AR2</td>
<td>Bits, bytes, and words, numeric data representation, fixed- and floating-point systems, signed and twos-complement representations, nonnumeric data (character codes, graphical data), representation of records and arrays</td>
<td>8</td>
</tr>
<tr>
<td>AR3</td>
<td>von Neumann machine, control unit; instruction fetch, decode, and execution, instruction sets and types (data manipulation, control, I/O), assembly/machine language programming, instruction formats, addressing modes, subroutine call and return mechanisms, I/O and interrupts</td>
<td>14</td>
</tr>
</tbody>
</table>

1See http://www.computer.org/education/cc2001/final/chapter05.htm for a description of Computer Science Knowledge units