Integrating Clustering and Multi-Document Summarization to Improve Document Understanding

Dingding Wang1 Shenghuo Zhu2 Tao Li1 Yun Chi2 Yihong Gong2

1. School of Computer Science, Florida International University, Miami, FL
2. NEC Laboratories America, Inc. Cupertino, CA

Motivation

- Lack of interpretation for each document cluster
- Ignore the context dependency of the sentences

Solution

Simultaneously cluster and summarize documents

Document Clustering

Document Summarization

Document Understanding

Motivation

Solution

Simultaneously cluster and summarize documents

Experiments

Data set: TDT_10 (Number of Documents: 7879; Number of Clusters: 10; Number of Frequent Words: 1000)

Illustrative Interpretation:

One-sentence summaries for the top 4 largest topics in TDT2 Corpus:

- **Topic 1**: The Security Council has refused to lift the sanctions until Iraq complies with council resolutions demanding it destroy its weapons of mass destruction.
- **Topic 2**: Clinton says he had a very clear memory of the incident and he stands by the sworn court statement he has made that he did nothing wrong.
- **Topic 3**: The IOC had been expected to approve a new rule that all challenges to Olympic results must be made within three years after the games and settled by the time the next games begins.
- **Topic 4**: HONG KONG (AP): southeast Asian currencies hit new lows Tuesday for a second straight day, unnerving investors and sending regional stock markets tumbling.

Computational Algorithm

Algorithm 1 Model factorization given base language models

Input: \(A \): term-document matrix; \(B \): term-sentence matrix;

Output: \(U \): sentence-topic matrix; \(V \): document-topic matrix.

begin

1. Initialization:
 - Initialize \(U \) and \(V \) follow Dirichlet distribution, with hyper-parameter \(\alpha_U \) and \(\alpha_V \) respectively.

2. Iteration:
 - repeat
 1. Compute \(C_U = A_U \) \(-\) \((B U V)^T\).
 2. Assign \(U = U \) \(-\) \((B^T C V)^T\) \(+\) \(\alpha_U \),
 and normalize each column to 1.
 3. Compute \(C_V = A_V \) \(-\) \((B V U)^T\).
 4. Assign \(V = V \) \(-\) \((C^T B U)^T\) \(+\) \(\alpha_V \),
 and normalize each row to 1.
 - until convergence
 - Return \(U, V \)

end