Course Title: Fundamentals of Data Science

Date:

Course Number: CAP 2752

Number of Credits: 3

Taught by: Fahad Saeed CASE Room xxx fsaeed@fiu.edu / (305) 348-3131

Subject Area: Fundamentals of Data	Subject Area Coordinator:
Science	Monique Ross
	email: moross@cs.fiu.edu
Catalog Description: This course will teach	data science fundamentals to undergraduate
non-CS majors. The focus will be on real-world applications and use of associated	
analysis, visualization tools, Python programming.	
Textbook: TBD	
References:	
Prerequisites Courses: None	
Corequisites Courses: None	

Summary:

This course will teach non-programmers to think in computing terms about modern topics, and to approach real-world applications through data science. The course will enable students to:

- Acquire computational thinking skills that will enable students to represent and reason about complex problems in the digital arena
- Understand different kinds of data in terms of their possibilities and limitations to approach complex problems cast in terms of the emerging field of data science
- Become data science scholars through best practices in data documentation and dissemination

The course is intended for students in disciplines outside of computer science and no prior programming experience is assumed. The course topics will be particularly relevant to students interested in physical sciences and social sciences.

Fundamentals of Data Science

Times & Locations:

Lecture will be held twice a week for 1 hour, 15 minutes; Office hours will be held once a week.

<u>Grading</u>

Homework	20%
Midterm Exam	30%
Presentations	10%
Final Exam	40%

Reading

Reading assignments will be distributed via the website. Readings will be associated with each lecture, and these should be completed in order to completely understand the material.

<u>Homework</u>

There will be at least 4 homework assignments. Homeworks will be available on the website by the beginning of the first class of the week. Homeworks must be submitted electronically as a single pdf file via the website. Late homeworks will be penalized 50%, and not accepted after the start of the first class of the week.

Exams and Evaluation

- a) There will be presentation on advanced topics by each individual student which will be evaluated by the instructors
- b) There will be two exams: a midterm and a final.

Schedule of Topics

Lecture #	Торіс
1	Computational thinking and data science
	 What is computational thinking
	 Computational thinking for reasoning and analysis
	What is data science
	Data scientists
	 The context of data science
2	Data
	What is data
	 What is not (yet) data
	 Time series data
	Networked data
	Geospatial data
	•Text data
	 Labeled and annotated data
	●Big data

|--|

	Fundamentals of Data Science
3	Data Representation (structured)
	Interrelations
	Spreadsheets
	Databases
	Matrices
	Graphs
	Other perspectives
3	Data analysis software
	 Programs for data analysis
	Inputs and Outputs
	Program Parameters
	Programming Languages
	Programs as Black Boxes
	Algorithms versus software
	 Data Structures and why they are important for data sciences
4	Multi-step data analysis as workflows
	 Building workflows by composing software
	Preprocessing and postprocessing data
	•Workflows for data analysis
	Workflow inputs and parameters
	•Executing workflows
	•Exploring data through workflows
	Workflows in practice
5	Workflow Jupyter notebook practicum
	 The Jupyter notebook workflow system
	Jupyter notebook in practice
6	Data pre-processing
	Data cleaning
	•Quality control
	•Data integration
	•Feature selection
	Feature construction
7	Data lifecycle
	•Data collection
	•Data storage
	Data extraction and querying
	•Data integration
	•Data presentation
8	Data visualization
	•Quality of visualizations
	Major types of visualizations

Fundamentals of	of Data	Science
-----------------	---------	---------

	Fundamentals of Data Science
	 Time series visualizations
	 Geospatial visualizations
	 Multidimensional spaces
	Network visualizations
9, 10	Data analysis tasks (I)
	 Data analysis tasks in data mining,
	statistics, and machine learning
	Supervised learning
	o Classification tasks
	o Classification algorithms
	o Evaluation of classifiers
11,12	Data analysis tasks (II)
	Unsupervised learning
	 Clustering
	Pattern detection
	Anomaly detection
13	Data analysis tasks (III)
	Causality
	Probabilistic graphical models
	Bayesian networks
	Causal models
14,15	Parallel and Distributed Computing for Big data
	Cost of Computation
	Divide and Conquer
	Speedup with Parallel Processing
	Limits of speedups: Critical Path
	 Amdahl's law
	When problems are not parallelizable
	Introduction to Parallel Graph Algorithms
16	Semantic metadata
	What is metadata
	Basic metadata versus semantic metadata
	Metadata about data collection
	 Metadata about data processing
	 Metadata about data processing Metadata for search and retrieval
	 Metadata for search and retrieval Metadata standards
	 Domain metadata and ontologies
17	Ontologies (I)
	What is an ontology
	 Taxonomies and class inheritance
	Properties
10	Logical constraints Data formate and standards
18	Data formats and standards

Fundamentals of Data Science

22	Advanced Topics (I) Multidisciplinary Collaborations between data scientists and domain
22	Introduction to Databases
21	Advanced Topics (I)
	Privacy and Ethics in Data Science
20	Advanced Topics (I)
	Software and other work products
	 Data citation and attribution
	•Licenses for data
	•Data identifiers
	•Data sharing
19	Data stewardship
	The Semantic Web and linked open data
	Data services
	Data repositories
	Data standards
	Data formats

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: https://abet.cs.fiu.edu/csassessment/