Knight Foundation School of Computing and Information Sciences

Course Title: Principles of Computer Graphics Date: 3/10/2004

Course Number: CAP 4710

Number of Credits: 3

Subject Area: Computer Systems	Subject Area Coordinator: Leonardo	
	Bobadilla	
	email: bobadilla@cs.fiu.edu	
Catalog Description: A first course in algorithms/techniques for image generation		
devices, geometric transformations/matrices, algorithms for hidden surfaces, ray tracing,		
advanced rendering. Programming with standard graphics interface. This course will have		
additional fees.		
Textbook: Computer Graphics with OpenGL, 3 rd Edition, Hearn and Baker, Prentice		
Hall (ISBN: 0130153907)		
References: Computer Graphics: Principles and Practice in C, 2 nd Edition, Foley, van		
Dam, Feiner, and Hughes, Addison-Wesley (ISBN: 0201848406)		
Prerequisites Courses: COP 3337 and MAC 2312		
Corequisites Courses: None		

<u>Type:</u> Elective for CS (Applications group).

Prerequisites Topics:

- Array, stack, and queue data structures
- Recursive functions
- Differentiation and integration

Course Outcomes:

- 1. Be familiar with drawing primitive objects (lines, circles, polygons) on a display
- 2. Be exposed to graphical input and output devices
- 3. Master two dimensional modeling and 2-D transformations
- 4. Be familiar with master-instance structure
- 5. Master three dimensional modeling and 3-D transformations
- 6. Be familiar with projection of 3-D objects on a 2-D plane
- 7. Master clipping, fill, and rendering techniques
- 8. Be exposed to color and shading models

Knight Foundation School of Computing and Information Sciences CAP 4710

Principles of Computer Graphics

Outline

Topic	Number of	Outcome
•	Lecture Hours	
Introduction	6	2,4
 Raster and vector graphics systems 		
 Video display devices 		
 Physical and logical input devices 		
 Issues in graphical systems development 		
 Coordinate representation 		
Drawing primitives	6	1
 Line drawing algorithms 		
 Circle and ellipse generation 		
 Fill-area primitives, scan-line polygon-fill 		
o OpenGL API		
 Character font outline & bitmap 		
Geometric transformations	6	3,5
 Two dimensional transformations 		
 Inverse transformations 		
 Three dimensional transformations 		
Object-relational model		
• Viewing	9	6,7
 Viewing pipeline 		
 Normalization and viewing transformation 		
 2-D clipping algorithms 		
 Projections: parallel and perspective 		
o 3-D object representations		
o 3-D clipping techniques		
Advanced graphics	9	8
 Hidden-surface removal methods 		
 Ray-tracing algorithm 		
 Texture mapping 		
o Color models: RGB, YIQ, CMY, HSV,HLS		

Knight Foundation School of Computing and Information Sciences CAP 4710

Principles of Computer Graphics

Course Outcomes Emphasized in Laboratory Projects / Assignments

	Outcome	Number of Weeks
1	Drawing primitive graphical objects	2
	Outcome: 1	
2	Two dimensional transformations	3
	Outcomes: 3	
3	Design of a 2-D graphical system with master-	4
	instance	
	Outcomes: 3,4,7	

Oral and Written Communication:

No significant coverage

Social and Ethical Implications of Computing Topics

No significant coverage

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: https://abet.cs.fiu.edu/csassessment/

Approximate number of credit hours devoted to fundamental CS topics

Topic	Core Hours	Advanced Hours
Algorithms:		1.5
Software Design:		
Computer Organization and Architecture:		0.5
Data Structures:	0.5	
Concepts of Programming Languages		

Knight Foundation School of Computing and Information Sciences CAP 4710

Principles of Computer Graphics

Theoretical Contents

Topic	Class time	
Matrix theory	0.5	

Problem Analysis Experiences

1. Mapping among several coordinate systems

Solution Design Experiences

- 1. Graphical transformations
- 2. Design of a simple graphical system

The Coverage of Knowledge Units within Computer Science Body of Knowledge 1

Knowledge Unit	Topic	Lecture Hours
<u>GV1</u>	Hierarchy of graphics software, using OpenGL API, simple color models (RGB, HSB, CMYK), homogeneous coordinates, affine transformations (scaling, rotation, translation), viewing transformation, clipping	6
GV2	Raster and vector graphics systems, video display devices, physical and logical input devices, issues in graphical systems development	3
<u>GV5</u>	Line generation algorithms (Bresenham), font generation: outline vs. bitmap, light-source and material properties, rendering of a polygonal surface, introduction to ray tracing, sampling techniques & antialiasing	9

¹See https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf for a description of Computer Science Knowledge units