Course Title: Fundamentals of Modeling & Simulations Date: 3/5/2020

Course Number: CAP 4830

Number of Credits: 3

Subject Area: Computer Applications	Subject Area Coordinator: Leonardo Bobadilla		
	email: bobadilla@cs.fiu.edu		
Catalog Description: Introduction to discret			
mathematical & statistical modeling, role of	random numbers, verification & validation,		
and applications.			
Textbook:			
Banks, Carson, Nelson & Nicol – Discrete-Event System Simulation, 5 th Edition, Pearson, 2010, 978-0136062127			
References:			
Prerequisites Courses: STA 2023 or STA 3033 and COP 3530			
Corequisite Courses: None			

Type: Elective for CS (Applications group)

Prerequisites Topics:

- 1. Basic techniques of algorithm analysis and problem solving
- 2. Familiar with basic data structures, e.g. queues and stacks
- 3. Familiar with encapsulation using functions
- 4. Familiar with concepts of probability
- 5. Familiar with random variables and their distributions

Course Outcomes:

- 1. Be familiar with the history, advantages, and disadvantages of simulations.
- 2. Be familiar with a variety of simulation environments and tools.
- 3. Be familiar with concepts in discrete-event simulation models.
- 4. Be familiar with statistical models and discrete distributions.
- 5. Be exposed to random numbers and their generation.
- 6. Be exposed to input modeling and parameter estimation.
- 7. Be familiar with verification, validation, and documentation of simulation models.
- 8. Master development of simulation models to address topics in the above outcomes.

Fundamentals of Modeling & Simulations

Relationship between Course Outcomes and Program Outcomes

BS in CS: Program Outcomes	Course Outcomes
a) Demonstrate proficiency in the foundation areas of Computer Science including mathematics, discrete structures, logic and the theory of algorithms	1, 2, 3, 4, 5, 6, 7, 8
b) Demonstrate proficiency in various areas of Computer Science including data structures and algorithms, concepts of programming languages and computer systems.	3, 4, 5, 6, 7, 8
c) Demonstrate proficiency in problem solving and application of software engineering techniques	7, 8
d) Demonstrate mastery of at least one modern programming language and proficiency in at least one other.	
e) Demonstrate understanding of the social and ethical concerns of the practicing computer scientist.	
f) Demonstrate the ability to work cooperatively in teams.	
g) Demonstrate effective communication skills.	

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: https://abet.cs.fiu.edu/csassessment/

Fundamentals of Modeling & Simulations

Outline

	Торіс	Number of Lecture Hours	Outcome
1.	Introduction to Simulations 1.1. Brief History 1.2. Advantages & disadvantages 1.3. Components of Systems and Simulations 1.4. Steps in a simulation design	8	1
2.	Simulation Environments and Tools 2.1. Spreadsheets 2.2. Software 2.3. Environments	5	2, 8
3.	Concepts in Discrete-Event Simulation 3.1. Event scheduling 3.2. Event processing	5	3, 8
4.	Statistical Models and Discrete Distributions 4.1. Terminology 4.2. Queueing and supply-chain systems 4.3. Reliability 4.4. Discrete distributions	5	4, 8
5.	Random-Number Generation 5.1. Properties of Random numbers 5.2. Generation of pseudo-random numbers 5.3. Techniques for generation random numbers	5	5, 8
6.	Input Modeling and Parameter Estimation 6.1. Data collection 6.2. Identifying distributions 6.3. Parameter estimation 6.4. Goodness-of-fit tests 6.5. Selecting input models	5	6, 8
7.	Verification and Validation 7.1. Model building and V&V 7.2. Verification 7.3. Validation 7.4. Documentation	5	7, 8

Fundamentals of Modeling & Simulations

Course Outcomes Emphasized in Laboratory Projects / Assignments

Outcome	Number of Weeks
Introduction to simulations 1	2
Simulation environments and tools 2,8	2
Concepts in discrete-event simulation 3,8	2
Statistical models and discrete distributions 4,8	2
Random number generation 5,8	2
Input modeling and parameter estimation 6,8	2
Verification and validation 7,8	2

Oral and Written Communication

No significant coverage

Written Reports		Oral Pres	entations
Number	Approx. Number	Number	Approx. Time for
Required	of pages	Required	each
0	0	0	0

Social and Ethical Implications of Computing Topics

No significant coverage

= 11 2-8-2			
Topic	Class time	student performance measures	

Fundamentals of Modeling & Simulations

Approximate number of credit hours devoted to fundamental CS topics

Fundamental CS Area	Core Hours	S	Advanc	ed Hours
Algorithms:				
Software Design:				
Computer Organization and Architecture:				
Data Structures:				
Concepts of Programming Languages				
Tì	neoretical Conto	ents		
Тор	Topic		Class time	

Problem Analysis Experiences		
Solution Design Experiences		

The Coverage of Knowledge Units within Computer Science Body of Knowledge 1

Knowledge Unit	Topic	Type	Lecture Hours

¹ See Appendix A in Computer Science Curricula 2013 at: https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf