Knight Foundation School of Computing and Information Sciences

Course Title: Advanced Topics in Machine Learning

Date: 11/01/2019

Course Number: CAP 6619

Number of Credits: 3

Subject Area: Intelligent Systems	Subject Area Coordinator:			
	email:			
Catalog Description: Advanced course on machine learning principles and techniques. Students propose,				
implement, and present a collaborative project with advanced machine learning techniques.				
Textbook: Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press, Cambridge,				
Massachusetts, 2016.				
References: Articles from relevant Journals and Conferences.				
Prerequisite Courses: <u>CAP 5610</u>				

Corequisite Courses: None

Type: Elective

Prerequisite Topics:

- Calculus
- Linear Algebra
- Introductory Machine Learning
- Introductory Statistics concepts
- Basic Programming (e.g., Python, MATLAB or R)

Course Outcomes:

Students who successfully complete this course will be able to:

- 1. Describe and explain a selection of concepts, algorithms and models used in deep learning to solve realworld problems;
- 2. Apply the most established deep learning algorithms;
- 3. Formulate a deep learning problem from scratch and utilize appropriate machine learning algorithms to solve the formulated problem;
- 4. Describe techniques that are believed to be important for future research;
- 5. Identify and explain metrics for optimizing deep models.

Knight Foundation School of Computing and Information Sciences CAP 6619

Advanced Topics in Machine Learning

Outline:

	Торіс	Number of Lecture	Outcome
		Hours (Total: 37.5 hours	
		= 15 weeks $* 2$	
		lectures/week * 1.25	
		hrs/lecture)	
1.	Machine Learning Basics: Supervised and unsupervised learning;		
	Overfitting and underfitting; Hyper parameters and validation sets;	2	1
	Stochastic gradient descent.		
2.	Deep Feedforward Networks: Architecture Design; Hidden units;	2	1, 2
	Back propagation.	2	1, 2
3.	Regularization for Deep Learning: Norm penalties; noise		
	robustness; early stopping; sparse representation; dropout;	2	1, 3, 5
	adversarial training.		
4.	Optimization for Training Deep Models: Challenges in neural		
	network optimization; Parameter initialization strategies;	2	5
	Algorithms with adaptive learning rates.		
5.	Convolutional Networks: Convolution operation; Variants of		
	convolution function; Efficient convolution algorithms;	3	1, 2, 3, 5
	Neuroscientific basis for convolutional networks		
6.	Sequence Modeling: Recurrent neural networks; Recursive neural	4	1, 2, 3, 5
	networks, Long Short-Term Memory and Other Gated RNNs.	+	1, 2, 3, 5
7.	Practical Methodology: Performance Metrics; Default Baseline	2	3,5
	Models; Selecting Hyperparameters; Debugging Strategies;	Z	5,5
8.	Applications of Established Deep Learning: Computer Vision;	2	2, 3
	Speech Recognition; Natural Language Processing.	2	2, 3
9.	Linear Factor Models: Probabilistic PCA and Factor Analysis;	3	1, 4
	Independent Component Analysis.	5	1,4
10.	Autoencoders: Regularized Autoencoders; Denoising	3	1, 4
	Autoencoders; Contractive Autoencoders.	5	1,4
11.	Deep Generative Models: Boltzmann Machines; Restricted		
	Boltzmann Machines; Deep Belief Networks; Deep Boltzmann		
	Machines; Boltzmann Machines for Real-Valued Data;	5	4, 5
	Convolutional Boltzmann Machines; Directed Generative Nets;		
	Evaluating Generative Models.		