Knight Foundation School of Computing and Information Sciences

Course Title: Geometric Modeling and Shape Analysis Date: 03/13/2014

Course Number: CAP 6736

Number of Credits: 3

Subject Area: Computer Science and	Subject Area Coordinator:	
Computing Technologies	Email :	
Catalog Description: Techniques for 2D/3D		
	odeling and shape analysis, and applications in	
science and engineering.		
Textbook: None		
References:		
Geometry processing, modeling, and shape an	nalysis:	
1. Ricci Flow for Shape Analysis and Sur Applications. Wei Zeng and Xianfeng	rface Registration: Theories, Algorithms and David Gu. Springer, 2013.	
 Polygon Mesh Processing. M. Botsch, A. K. Peters, Ltd. Natick, MA, 2010. 	, L. Kobbelt, M. Pauly, P. Alliez, and B. Levy.	
3. <i>Computational Conformal Geometry</i> . International Press, 2008.	Xianfeng David Gu and Shing-Tung Yau.	
4. <u>https://www.cgal.org/</u> . CGAL - Comp	utational Geometry Algorithms Library.	
5. <u>http://meshlab.sourceforge.net/</u> . Mesh	Lab.	
6. 3D Computer Vision: Efficient Me Springer, 2 nd ed., 2013.	ethods and Applications. Christian Wöhler.	
7. An Introduction to 3D Computer Visio Cyganek and J. Paul Siebert. Wiley, 2	· · ·	
Other Related Material:		
Lecture notes; Related journal articles (e.g., TOG, TVCG, TPAMI, and IJCV) and		
conference papers (e.g., SIGGRAPH, ICCV, CVPR, ECCV, IPMI, and MICCAI).		
Prerequisites Courses: SCIS Graduate Standing or by Permission of Instructor		
Corequisites Courses: N/A		

Knight Foundation School of Computing and Information Sciences CAP 6736 Geometric Modeling and Shape Analysis

Type: Elective for MSCS, MSIT, MSTN, and Ph.D. students

Prerequisites Topics:

- Data structure, Algebra.
- Basic programming skills.

Objectives:

Students will learn fundamental techniques for dealing with geometric models and their applications in graphics, vision, animation, medical imaging, and other fields in science and engineering.

Major Topics:

- Introduction to Geometry, Topology and Shape Analysis
- Representations of 3D Objects: raw data, surface reps, solid, high-level reps.
- Discrete Structures on Meshes: polygonal meshes (half edge data structure)
- Reconstruction: range images, polygon soups, sensor data, point clouds.
- Processing: Smoothing, Simplification, Remeshing
- Modeling: Parameterization, Mapping, Deformation, Morphing, Subdivision
- Shape Analysis: similarity criteria; matching, registration, recognition, retrieval, classification, clustering, synthesis, indexing.
- Applications
- Project Discussion

Learning Outcomes:

- 1. Understand the basic concepts and theorems of geometry and topology.
- 2. Master the discrete representations and data structures of geometric objects.
- 3. Learn the geometric processing pipeline from reconstruction to shape analysis.
- 4. Master the fundamental methods for 3D reconstruction.
- 5. Master the fundamental tools for 3D mesh processing, modeling and analysis.
- 6. Understand the usage of geometric analysis techniques in solving real-world problems.

Knight Foundation School of Computing and Information Sciences CAP 6736 Geometric Modeling and Shape Analysis

Course Outline

Major Topics	Number of Lecture Hours	Outcome
Introduction to Geometry, Topology and Shape Analysis	1	1
Representations of 3D Objects	1	2
Discrete Structures on Meshes	1	2
Reconstruction	4	3, 4
Processing: Smoothing, Simplification, Remeshing	4	3, 5
Modeling: Parameterization, Mapping, Deformation, Morphing, Subdivision	8	3, 5
Shape Analysis	6	3, 5
Applications	3	6
Project Discussion	4	1-6

Course Outcomes Emphasized in Laboratory Projects / Assignments

Outcome	Number of Weeks
1	od assignments (paper reading and presentation) to evaluate the standing and learn classical and latest research results.
• 1 term project o	n developing a program with a selective topic.
1, 2	2 week: Assignment 1
3, 4	2 week: Assignment 2
3, 5	2 week: Assignment 3; 1 week: Term Project.
3, 5	2 week: Assignment 4; 1 week: Term Project.
5, 6	2 week: Assignment 5; 1 week: Term Project.

Oral and Written Communication:

- Number of written reports: **1** for the term project.
- Approximate number of pages for term project report: **10** (including figures, tables, references).
- Number of assignments: **5** (each is due in two weeks from the day of assignment).
- Number of required oral presentations: 1 for the term project.
- Approximate time for each presentation: **20 minutes** for each group (each has at most 4 students).

Grading Policy:

- Assignments: 50%
- Term Project Presentation: 20%
- Term Project Report and Program: 25%
- Participation: 5%