Course Title: Geometric Modeling and Shape Analysis
Date: 03/13/2014

Course Number: CAP 6736

Number of Credits: 3

<table>
<thead>
<tr>
<th>Subject Area: Computer Science and Computing Technologies</th>
<th>Subject Area Coordinator: Email:</th>
</tr>
</thead>
</table>

Catalog Description: Techniques for 2D/3D geometric modeling and analysis, including representation, reconstruction, processing, modeling and shape analysis, and applications in science and engineering.

Textbook: None

References:

Geometry processing, modeling, and shape analysis:

Other Related Material:

Lecture notes; Related journal articles (e.g., TOG, TVCG, TPAMI, and IJCV) and conference papers (e.g., SIGGRAPH, ICCV, CVPR, ECCV, IPMI, and MICCAI).

Prerequisites Courses: SCIS Graduate Standing or by Permission of Instructor

Corequisites Courses: N/A
Type: Elective for MSCS, MSIT, MSTN, and Ph.D. students

Prerequisites Topics:
- Data structure, Algebra.
- Basic programming skills.

Objectives:
Students will learn fundamental techniques for dealing with geometric models and their applications in graphics, vision, animation, medical imaging, and other fields in science and engineering.

Major Topics:
- Introduction to Geometry, Topology and Shape Analysis
- Representations of 3D Objects: raw data, surface reps, solid, high-level reps.
- Discrete Structures on Meshes: polygonal meshes (half edge data structure)
- Reconstruction: range images, polygon soups, sensor data, point clouds.
- Processing: Smoothing, Simplification, Remeshing
- Modeling: Parameterization, Mapping, Deformation, Morphing, Subdivision
- Shape Analysis: similarity criteria; matching, registration, recognition, retrieval, classification, clustering, synthesis, indexing.
- Applications
- Project Discussion

Learning Outcomes:
1. Understand the basic concepts and theorems of geometry and topology.
2. Master the discrete representations and data structures of geometric objects.
3. Learn the geometric processing pipeline from reconstruction to shape analysis.
4. Master the fundamental methods for 3D reconstruction.
5. Master the fundamental tools for 3D mesh processing, modeling and analysis.
6. Understand the usage of geometric analysis techniques in solving real-world problems.
Course Outline

<table>
<thead>
<tr>
<th>Major Topics</th>
<th>Number of Lecture Hours</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Geometry, Topology and Shape Analysis</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Representations of 3D Objects</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Discrete Structures on Meshes</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Reconstruction</td>
<td>4</td>
<td>3, 4</td>
</tr>
<tr>
<td>Processing: Smoothing, Simplification, Remeshing</td>
<td>4</td>
<td>3, 5</td>
</tr>
<tr>
<td>Modeling: Parameterization, Mapping, Deformation, Morphing, Subdivision</td>
<td>8</td>
<td>3, 5</td>
</tr>
<tr>
<td>Shape Analysis</td>
<td>6</td>
<td>3, 5</td>
</tr>
<tr>
<td>Applications</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Project Discussion</td>
<td>4</td>
<td>1-6</td>
</tr>
</tbody>
</table>

Course Outcomes Emphasized in Laboratory Projects / Assignments

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>2 week: Assignment 1</td>
</tr>
<tr>
<td>3, 4</td>
<td>2 week: Assignment 2</td>
</tr>
<tr>
<td>3, 5</td>
<td>2 week: Assignment 3; 1 week: Term Project.</td>
</tr>
<tr>
<td>3, 5</td>
<td>2 week: Assignment 4; 1 week: Term Project.</td>
</tr>
<tr>
<td>5, 6</td>
<td>2 week: Assignment 5; 1 week: Term Project.</td>
</tr>
</tbody>
</table>

- 5 two-week period assignments (paper reading and presentation) to evaluate the students’ understanding and learn classical and latest research results.
- 1 term project on developing a program with a selective topic.
Oral and Written Communication:

- Number of written reports: 1 for the term project.
- Approximate number of pages for term project report: 10 (including figures, tables, references).
- Number of assignments: 5 (each is due in two weeks from the day of assignment).
- Number of required oral presentations: 1 for the term project.
- Approximate time for each presentation: 20 minutes for each group (each has at most 4 students).

Grading Policy:

- Assignments: 50%
- Term Project Presentation: 20%
- Term Project Report and Program: 25%
- Participation: 5%