Knight Foundation School of Computing and Information Sciences

Course Title: Computer Architecture

Date: 9/23/2019

Course Number: CDA 3102

Number of Credits: 3

Subject Area: Computer Organization	Subject Area Coordinator: Dong Chen		
	email: dochen@cs.fiu.edu		
Catalog Description:			
Covers the levels of organization in a compu- language programming, design of memory,	· ·		
Textbook: Computer Organization and Design: The Hardware/Software Interface David A. Patterson, John L. Hennessy Morgan Kaufmann			
References: Digital Design and Computer A	Architecture		
David Money Harris and Sarah	David Money Harris and Sarah L. Harris		
Morgan Kaufmann			
Prerequisites Courses: COP 3337 and COT 3100 or MAD 2104			
Corequisites Courses: None			

<u>Type:</u> Required for CS Major

Prerequisites Topics:

- High level programming language constructs
- Function call/return
- Parameters of a function(method)
- Boolean algebra
- Fundamental data structures

Course Outcomes:

- 1. Master the data path of a simple von Neumann architecture and its relation to the instruction execution cycle
- 2. Master simple machine and assembly language programming
- 3. Master the implementation of high-level language constructs in lower levels: selection, iteration, function call/return
- 4. Be familiar with interrupts and traps
- 5. Master the design of combinational and sequential circuits
- 6. Master the design of memory and the ALU.
- 7. Master control unit design
- 8. Be familiar with cache architectures, branch predictions, scheduling of multiple instruction issue and flow control.

Relationship between Course Outcomes and Program Outcomes

BS in CS: Program Outcomes	Course Outcomes
a) Demonstrate proficiency in the foundation areas of Computer Science including mathematics, discrete structures, logic and the theory of algorithms	1, 5
 b) Demonstrate proficiency in various areas of Computer Science including data structures and algorithms, concepts of programming languages and computer systems. 	1, 2, 3, 5, 6, 7, 8
c) Demonstrate proficiency in problem solving and application of software engineering techniques	5
d) Demonstrate mastery of at least one modern programming language and proficiency in at least one other.	
e) Demonstrate understanding of the social and ethical concerns of the practicing computer scientist.	
f) Demonstrate the ability to work cooperatively in teams.	
g) Demonstrate effective communication skills.	

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: https://abet.cs.fiu.edu/csassessment/

Outline				
	Торіс	Number of	Outcome	
	-	Lecture Hours		
• Digi	tal logic: Design of	14	1,5,6,7	
0	Data representation		-,,,,,,,,	
0	Fundamental building blocks (logic			
	gates, combinational circuits)			
0	Von Neumann model			
0	Instruction execution cycle			
0	Multiplexer, demultiplexer, encoder, decoder			
0	Arithmetic Logic Unit, Shifter			
0	Latch, flip-flop, register, memory			
	organization			
0	Clocks, counters			
0	Bus protocols, arbitration, DMA			
0	Data path, control unit			
0	Microprogram			
• Asse	embly level machine organization	14	2,3,4	
0	Instruction sets and types			
0	Assembly language programming			
0	Addressing modes			
0	Subroutines and system routines			
0	I/O and interrupts			
0	Bit level manipulation			
0	Assembly process and linking			
• Perf	ormance enhancement	11	8	
0	Interpretation and translation	_	~	
0	Simple machine architecture			
0	Instruction prefetch			
0	Pipelining, pipeline hazards			
0	Cache architecture			
0	Branch prediction			
0	Dynamic scheduling of instructions			
0	Speculative execution			

Outline

Course Outcomes Emphasized in Laboratory Projects / Assignments

	Outcome	Number of Weeks
1	Digital circuit design	2
	Outcomes: 5	
2	Machine and assembly language programming	3
	Outcomes: 2,3	
3	Control unit and CPU design	4
	Outcomes: 1,4,7	
4	Memory	2
	Outcomes: 6,8	
5	Pipelining	2
	Outcomes: 8	

Oral and Written Communication

No significant coverage

Written Reports		Oral Presentations	
Number	Approx. Number	Number	Approx. Time for
Required	of pages	Required	each
0	0	0	0

Social and Ethical Implications of Computing Topics

No significant coverage

Торіс	Class time student performance me	

Approximate number of credit hours devoted to fundamental CS topics

Fundamental CS Area	Core Hours	Advanced Hours
Algorithms:		
Software Design:		
Computer Organization and Architecture:	2.5	
Data Structures:		
Concepts of Programming Languages	0.5	

Theoretical Contents

Торіс	Class time	

Problem Analysis Experiences

1. Instruction set analysis, Implementation of high level programming language constructs in low level languages

Solution Design Experiences

- 1. Digital circuit design
- 2. Assembly language programming
- 3. Microprogram design

The Coverage of Knowledge Units within Computer Science Body of Knowledge¹

Knowledge Unit	Торіс	Lecture Hours
PL2	Virtual machine, hierarchy of virtual	6
	machines, intermediate languages	
<u>AR1</u>	History of computer architecture,	6
	fundamental logic circuits, gate delays	
<u>AR2</u>	Bits, bytes, and words, numeric data	2
	representation, fixed- and floating-point	
	systems, signed and twos-complement	
	representations, nonnumeric data (character	
	codes, graphical data), representation of	
AR3	records and arrays von Neumann machine, control unit;	10
AKS	instruction fetch, decode, and execution,	12
	instruction sets and types (data manipulation,	
	control, I/O), assembly/machine language	
	programming, instruction formats, addressing	
	modes, subroutine call and return	
	mechanisms, I/O and interrupts	
AR4	Storage systems, coding, data integrity,	4
	memory organization, latency, cycle time,	
	cache memories	
<u>AR5</u>	I/O fundamentals, external storage, RAID	2
	architectures, bus protocols, bus arbitration,	
	DMA	
AR6	Implementation of simple datapath, control	3
	unit, pipelining, instruction level	5
	parallelism	
<u>AR7</u>	SIMD, MIMD, VLIW, interconnection	2
	networks, shared memory systems, cache	
	coherence	
<u>AR8</u>	Superscalar, superpipelining, branch	2
	prediction, prefetching, speculative execution,	
	multiple instruction issue	

¹See <u>https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf</u> for a description of Computer Science Knowledge units