Course Title: Fundamentals of Computer Systems **Date:** 2/12/2018

Course Number: CDA 3103

Number of Credits: 3

Subject Area: Computer Organization	ct Area: Computer Organization Subject Area Coordinator:	
	Nagarajan Prabakar	
	email: prabakar@cis.fiu.edu	
Catalog Description: Overview of computer systems organization. Data representation.		
Machine and assembly language programming. This course will have additional fees.		
Textbook: Introduction to Computing Systems, 2 nd Edition, Yale N. Patt, Sanjay J. Patel		
McGraw-Hill (ISBN: 0072467509)		
References:		
Prerequisites Courses: COP 2210		
Corequisites Courses: None		

Type: Required

<u>Prerequisites Topics:</u>

- High level programming language constructs
- Function call/return
- Parameters of a function(method)

Course Outcomes:

- 1. Master the representations of numeric and character data
- 2. Master the implementation of some basic combinational circuits, registers and memories
- 3. Be familiar with the data path of a simple von Neumann architecture and its relation to the instruction execution cycle
- 4. Master simple machine and assembly language programming
- 5. Master the implementation of high-level language constructs in lower levels: selection, iteration, function call/return
- 6. Be familiar with interrupts and traps

Fundamentals of Computer Systems

Relationship between Course Outcomes and Program Outcomes

BS in CS: Program Outcomes	Course Outcomes
a) Demonstrate proficiency in the foundation areas of Computer Science including mathematics, discrete structures, logic and the theory of algorithms	1,2,3
b) Demonstrate proficiency in various areas of Computer Science including data structures and algorithms, concepts of programming languages and computer systems.	3,4,5
c) Demonstrate proficiency in problem solving and application of software engineering techniques	
d) Demonstrate mastery of at least one modern programming language and proficiency in at least one other.	
e) Demonstrate understanding of the social and ethical concerns of the practicing computer scientist.	
f) Demonstrate the ability to work cooperatively in teams.	
g) Demonstrate effective communication skills.	

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: https://abet.cs.fiu.edu/csassessment/

Fundamentals of Computer Systems

Outline

	Topic	Number of	Outcome
	Topic	Lecture Hours	Outcome
3.5			4
• Mac	hine level representation	8	1
0	Numeric data representation		
0	Signed & unsigned representation		
0	Fixed- and floating-point systems		
0	Integer arithmetic		
0	Boolean operations		
• Digi	tal logic	8	2,3
0	Fundamental building blocks		·
	(logic gates, combinational circuits)		
0	Von Neumann model		
0	Instruction execution cycle		
• Asse	embly level machine organization	14	4,5
0	Instruction sets and types		,
0	Assembly language programming		
0	Addressing modes		
0	Subroutines and system routines		
0	I/O and interrupts		
0	Bit level manipulation		
0	Assembly process and linking		
• Intro	oduction to architecture	8	3
0	Hierarchy of virtual machines		
0	Interpretation and translation		
0	Simple machine architecture		

Course Outcomes Emphasized in Laboratory Projects / Assignments

	Outcome	Number of Weeks
1	Data representation	1
	Outcome: 1	
2	Digital circuit design	2
	Outcomes: 2	
3	Architecture concepts	2
	Outcomes: 3	
4	Machine language programming	2
	Outcomes: 4	
5	Assembly language programming	2
	Outcomes: 5	
6	Assembly language programming	2
	Outcomes: 5	

Fundamentals of Computer Systems

Oral and Written Communication:

No significant coverage

Social and Ethical Implications of Computing Topics

No significant coverage

Approximate number of credit hours devoted to fundamental CS topics

Topic	Core Hours	Advanced Hours
Algorithms:		
Software Design:		
Computer Organization and Architecture:	2.0	
Data Structures:		
Concepts of Programming Languages:	1.0	

Theoretical Contents

Topic	Class time
Boolean algebra	1.0

Problem Analysis Experiences

Implementation of high level programming language constructs in low level languages

Solution Design Experiences

Digital circuit design
Assembly language programming

Fundamentals of Computer Systems

The Coverage of Knowledge Units within Computer Science Body of Knowledge¹

Knowledge Unit	Topic	Lecture Hours
PL2	Virtual machine, hierarchy of virtual	8
	machines, intermediate languages	
<u>AR1</u>	History of computer architecture,	8
	fundamental logic circuits, gate delays	
AR2	Bits, bytes, and words, numeric data	8
	representation, fixed- and floating-point	
	systems, signed and twos-complement	
	representations, nonnumeric data (character	
	codes, graphical data), representation of	
	records and arrays	
<u>AR3</u>	von Neumann machine, control unit;	14
	instruction fetch, decode, and execution,	
	instruction sets and types (data manipulation,	
	control, I/O), assembly/machine language	
	programming, instruction formats, addressing	
	modes, subroutine call and return	
	mechanisms, I/O and interrupts	

¹See <u>https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf</u> a description of Computer Science Knowledge units