Course Title: Introduction to Mobile Robotics

Date: 09/23/2015

Course Number: CDA 4625

Number of Credits: 3

Subject Area: FoundationsSubject Area Coordinator: Gregory I				
	email: gmuradre@fiu.edu			
Catalog Description: A first course on th	e theoretical and practical aspects of mobile			
robotics. Topics include locomotion, kinematics, sensing and perception, localization				
and mapping, planning and navigation.				
Textbook: Introduction to Autonomous N	Abile Robots (second edition),			
Roland Siegwart, Illah R. Nou	urbakhsh and Davide Scaramuzza.			
Bradford Books, 2011. ISBN: 0262015358				
References:				
The Robotics Primer, Maja. J. Mataric, MIT Press, 2007. ISBN 9780262633543				
Planning Algorithms Steven. M. LaValle, Cambridge University Press, 2006. ISBN				
0521862051				
Principles of Robot Motion, Howie Choset, et al. ISBN 0-262-03327-5.				
Prerequisites Courses: <u>COP 3530</u> and <u>STA 3033</u>				
Corequisites Courses: None				

<u>Type:</u> Elective for CS (Systems group)

Prerequisites Topics:

- 1. Basic techniques of algorithm runtime analysis
- 2. Graph algorithms such as shortest path and minimum spanning tree
- 3. Knowledge of a standard data structure library of a major programming language
- 4. Familiarity with basic probability concepts
- 5. Familiarity with discrete and continuous probability functions

CDA 4625

Introduction to Mobile Robotics

Course Outcomes:

- 1. List capabilities and limitations of today's state-of-the- art robot systems, including their sensors and the crucial sensor processing that informs those systems [Familiarity]
- 2. Integrate sensors, actuators, and software into a robot designed to undertake some task. [Usage]
- 3. Summarize the importance of image and object recognition in AI and indicate several significant applications of this technology. [Familiarity]
- 4. List at least three image- segmentation approaches, such as thresholding, edgebased and region-based algorithms, along with their defining characteristics, strengths, and weaknesses [Familiarity]
- 5. Characterize the uncertainties associated with common robot sensors and actuators; articulate strategies for mitigating these uncertainties. [Familiarity]
- 6. List the differences among robots' representations of their external environment, including their strengths and shortcomings. [Familiarity]
- 7. Implement fundamental motion planning algorithms within a robot configuration space. [Usage]
- 8. Compare and contrast at least three strategies for robot navigation within known and/or unknown environments, including their strengths and shortcomings [Assessment]

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: https://abet.cs.fiu.edu/csassessment/

CDA 4625

Introduction to Mobile Robotics

Outline

Торіс	Number of	Outcome
	Lecture Hours	
Introduction	2	1
• Motivation		
 Domains of applications 		
 Types of mobile robots 		
 Problems in mobile robotics 		
Locomotion	4	1,2,5
 Important issues for locomotion 		
 Legged Mobile robots 		
 Wheeled Mobile robots 		
 Aerial Mobile robots 		
 Mobile Robot Kinematics 	4	1,2,5
 Kinematic Models and Constrains 		
 Mobile Robot Maneuverability 		
 Mobile Robot Workspace 		
 Motion Control 		
Perception	6	3,4,5
 Sensors for mobile robots 		
 Fundamentals of Image Processing 		
 Fundamentals of Computer Vision 		
 Feature Extraction 		
Mobile Robot Localization	8	6
 Challenges of Localization 		
 Belief Representation 		
• Probabilistic Map-Based Localization		
 Other Localization Systems 		
Planning and Navigation	12	7,8
 Planning and reacting 		,
 Path Planning 		
 Obstacle Avoidance 		
 Navigation Architectures 		

CDA 4625

Introduction to Mobile Robotics

Course Outcomes Emphasized in Laboratory Projects / Assignments

	Outcome	Number of Weeks
1	Locomotion	1
	Outcome:1,2	1
2	Mobile Robot Kinematics	1
	Outcomes: 2,5	1
3	Perception	1
	Outcomes: 3,4	1
4	Mobile Robot Localization	1
	Outcomes: 6	1
5	Planning and Navigation	1
	Outcomes: 7,8	I

Oral and Written Communication:

Written Reports	Oral Presentations		
Number Required	Approx. Number	Number	Approx. Time for
Number Required	of pages	Required	each
1	4	1	15 minutes

Social and Ethical Implications of Computing Topics

No significant coverage

CDA 4625

Introduction to Mobile Robotics

Approximate number of credit hours devoted to fundamental CS topics

Торіс	Core Hours	Advanced Hours
Algorithms:		2.0
Software Design:		
Computer Organization and Architecture:		1.0
Data Structures:		
Concepts of Programming Languages		

Theoretical Contents

Торіс	Class time
Statistics and Linear algebra	2.0

Problem Analysis Experiences

1. Identify problems that can be solved by using mobile robots.

Solution Design Experiences

1.	Locomotion
2.	Mobile Robot Kinematics
3.	Perception
4.	Mobile Robot Localization
5.	Planning and Navigation

CDA 4625

Introduction to Mobile Robotics

The Coverage of Knowledge Units within Computer Science Body of Knowledge¹

Knowledge	Knowledge	Lecture Hours		
Area	Unit	Tier-1	Tier-2	Elective
IS	Robotics			30
IS	Perception and Computer Vision			6

¹See Appendix A in *Computer Science Curricula 2013*. Final Report of the IEEE and ACM Joint Task Force on Computing Curricula, available at: <u>https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf</u>