Knight Foundation School of Computing and Information Sciences

Course Title: Fundamentals of Blockchain Technologies Date: 11/18/2019

Course Number: CIS 4731

Number of Credits: 3

Subject Area: Computer Information	Subject Area Coordinator: Gregory Reis
Systems	email: gmuradre@fiu.edu

Catalog Description: Introduction to blockchain key concepts such as proof-of-work, mining, distributed consensus, and its applications including crypto-currencies, smart contracts, and supply chain monitoring.

Textbook: Imran Bashir, Mastering Blockchain: Distributed ledger technology, decentralization, and smart contracts explained, 2nd Edition (ISBN-13: 978-1788839044) Arvind Narayanan, et al., Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University Press, 2016. ISBN: 978-0-691-17169-2

References:

Stanford CS251 Bitcoin and Cryptocurrencies

Prerequisites Courses: COP 3530

Co-requisite Courses: None

Type: Elective for CS (Systems group)

Prerequisites Topics:

- 1. Functions
- 2. Hashing
- 3. Basic number theory
- 4. Graphs
- 5. Tree data structures

Course Outcomes:

- 1. Understand the principles of blockchain technologies and distributed consensus
- 2. Be familiar with crypto-currency technologies
- 3. Understand proof-of-work and mining strategies
- 4. Understand proof-of-stake
- 5. Understand smart contracts and how blockchains establish trust for economic activities
- 6. Be exposed to how blockchain can enhance security and privacy of computer systems.

Knight Foundation School of Computing and Information Sciences CIS 4731

Fundamentals of Blockchain Technologies

Relationship between Course Outcomes and Program Outcomes

BS in CS: Program Outcomes	Course Outcomes
a) Demonstrate proficiency in the foundation areas of Computer Science including mathematics, discrete structures, logic and the theory of algorithms	2,3
b) Demonstrate proficiency in various areas of Computer Science including data structures and algorithms, concepts of programming languages and computer systems.	1, 2, 3, 4, 5, 6
c) Demonstrate proficiency in problem solving and application of software engineering techniques	
d) Demonstrate mastery of at least one modern programming language and proficiency in at least one other.	
e) Demonstrate understanding of the social and ethical concerns of the practicing computer scientist.	
f) Demonstrate the ability to work cooperatively in teams.	
g) Demonstrate effective communication skills.	

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: https://abet.cs.fiu.edu/csassessment/

Knight Foundation School of Computing and Information Sciences CIS 4731

Fundamentals of Blockchain Technologies

Outline

Outme				
Topic	Number	Outcome		
-	of Lecture			
	Hours			
Introduction to Blockchain	10	1, 2		
1.1. Peer to peer networks		ŕ		
1.2. Cryptography				
1.3. Digital Signature				
1.4. Nodes				
1.5. Hashing				
2. Overview of Consensus protocols	10	1, 5		
2.1. Byzantine fault and Byzantine Generals Problem				
2.2. Practical Byzantine fault tolerance				
2.3. Nakamoto Consensus				
3. Proof of Work and Mining Strategies	2.5	3		
3.1. Analysis of the Blockchain protocol in Asynchronous				
networks				
3.2. Scalable BlockDAG protocols				
4. Proof of Stake	2.5	1, 4		
4.1. Algorand Byzantine Agreement				
5. Blockchain in Business	7.5	5, 6		
5.1. Blockchain in Marketing				
5.2. Blockchain in Supply Chain				
5.3. Smart Contracts and Accounting				
6. Cryptocurrency Technology	7.5	2, 6		
6.1. Trading cryptocurrencies		,		
6.2. Mining attacks and security issues				
6.3. Value evaluation of cryptocurrencies				
71				

Knight Foundation School of Computing and Information Sciences CIS 4731

Fundamentals of Blockchain Technologies

Course Outcomes Emphasized in Laboratory Projects / Assignments

Outcome	Number of Weeks
Programming Assignment addressing consensus algorithms	3
Programming Assignment addressing trade using bitcoins	3
Programming Assignment addressing smart contracts	3
Homework addressing Hashing and Cryptography	2
Homework addressing Proof of work and Proof of stake	2
Homework addressing blockchain protocols for e-commerce	2

Oral and Written Communications

Written Reports		Oral Presentations	
Number	Approx. Number	Number	Approx. Time for
Required	of pages	Required	each
3	2	0	0

Approximate Number of Credit Hours Devoted to Fundamental CS Topics¹

Fundamental CS Area	Core Hours	Advanced Hours
CN – Computational Science	0	1
DS – Discrete Structures	0	1
IS – Intelligent Systems	0	0.5

Theoretical Contents

Topic	Class time	
Algorithm Analysis	5	
Probability Theory	2	

Problem Analysis Experiences

Blockchain applications and performance analysis of consensus algorithms

Solution Design Experiences

<u> </u>	
None	

¹ See Appendix A in *Computer Science Curricula 2013*. Final Report of the IEEE and ACM Joint Task Force, available at: https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf