Knight Foundation School of Computing and Information Sciences

Course Title: Introduction to Cryptography

Date: 11/02/2021

Course Number: CIS-5xxx

Number of Credits: 3

Subject Area: Cybersecurity	Subject Area Coordinator:	
	email:	
Catalog Description: Introduction to cryptography, including hash functions, symmetric		
and public key cryptosystems, applications, attack types, standards. No programming or		
special math skills required.		
Textbook: Menezes, Alfred J., Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of		
applied cryptography. CRC press, 2018. ISBN-13: 978-0849385230		
References: None		

Prerequisites Courses: None (M.S. or Ph.D. standing or permission of the instructor Corequisites Courses: None

Type: Required

Prerequisites Topics:

• Pre-college Mathematics

<u>Course Outcomes:</u> At the end of the course, students should be able to:

O1. Understand basic security functions, including confidentiality, integrity, authentication, non-repudiation

O2. Understand various attack techniques, including brute force, chosen plaintext (CPA), known plaintext, chosen cyphertext (CCA), differential and linear cryptanalysis

O3. Explain the concepts behind IND-CPA and IND-CCA games

O4. Describe the applications of hash functions, including integrity checking, data

authentication, and login services (secure storage of authentication credentials)

O5. List and explain the properties of cryptographic hash functions (pre-image resistance, second pre-image resistance, collision resistance)

O6. Master hash functions concepts, including MD4, MD5, SHA-1, SHA-2, SHA-3

O7. Master the concepts of symmetric key cryptography, including DES and Twofish

O8. Explain differences between block and stream data

O9. Explain differences between various cryptographic modes, their strengths and weaknesses, including IND-CPA security

O10. Understand the evolution from DES to AES

O11. Master the concepts and implementation of public key cryptosystems, including Diffie-Hellman, RSA, Elliptic Curve Cryptography, ElGamal, and DSA, quantum crypto O12. Describe their vulnerabilities, including man-in-the-middle and IND-CPA attacks, and solutions.

O13. Understand PKC applications including public key certificates, public key infrastructure, GPG (GNU privacy guard), SSH/OpenSSL, key management, digital signatures and authentication

O14. List cryptographic standards (FIPS 140 series)

O15. Understand implementation failures

Outline

Торіс	Lecture Hours	Outcome
Introduction		O1, O2
Background and history of cryptography	3.5	
Basic concepts and security functions		
Cryptosystems overview	3.5	02, 03
Attack types IND CRA and IND CCA games		
IND-CPA and IND-CCA games Cryptographic Head Functions	6	04 05 06
Properties	0	04, 05, 06
Implementation		
Applications		
Standards		
Symmetric Key Cryptography	3	O7, O10
DES, AES, RC4		
Standards		
Multiple encryption modes	5	O8, O9
Operation modes		
 IND-CPA security 		
Public Key Cryptography	6	O11, O12
 RSA, DH, ElGamal, DSA 		
 IND-CPA security 		
Standards		
Public Key Cryptography	3	O11
Elliptic curve cryptography		
Applications	3	O13
Digital Certificates		
PKI		
Digital Signatures		
Standards		
Implementation failures	3	O14

Grading Policy

- Midterm: 30%
- Final Exam: 30%
- Assignments: 30%
- Participation: 10%