Competitive Programming and Problem Solving

School of Computing and Information Sciences

Course Title: Competitive Programming and Problem **Date:** Feb 9, 2011

Solving

Course Number: COP 4516

Number of Credits: 3

Subject Area: Algorithms,	Subject Area Coordinator: Tim Downey
programming	
	email: downeyt@cis.fiu.edu

Catalog Description: Problem solving for programming competitions. Algorithms, analysis, programming, debugging, group collaboration. Participation in team practices

and rigorous individual preparation.

Textbook:

Competitive Programming, by Steven Halim and Felix Halim, Lulu.com, 2010

References:

Programming Challenges, by Steven S. Skiena and Miguel A. Revilla. *Data Structures and Algorithm Analysis in Java 2*nd ed, by Weiss

Prerequisite Courses: COP 3530

Corequisite Courses:

Type: General free elective

Prerequisite Topics:

- P1. Be familiar with basic techniques of algorithm analysis
- P2. Be familiar with writing recursive methods
- P3. Master the implementation of linked data structures such as linked lists and binary trees
- P4. Be familiar with advanced data structures such as maps, sets, and priority queues.
- P5. Be familiar with some graph algorithms such as shortest path and minimum spanning tree
- P6. Master the standard data structure library of a major programming language

Course Outcomes:

- O1. Be familiar with standard competitive programming strategies and effective team collaboration techniques
- O2. Be able to implement efficient solutions to programming problems while working under time pressure
- O3. Be able to recognize the appropriateness and application of standard algorithmic strategies to new and challenging problems.

Relationship between Course Outcomes and Program Outcomes

BS in CS: Program Outcomes	Course Outcomes
a) Demonstrate proficiency in the foundation areas of Computer Science including mathematics, discrete structures, logic and the theory of algorithms	O1, O2, O3
b) Demonstrate proficiency in various areas of Computer Science including data structures and algorithms, concepts of programming languages and computer systems.	01, 02, 03
c) Demonstrate proficiency in problem solving and application of software engineering techniques	01, 02, 03
d) Demonstrate mastery of at least one modern programming language and proficiency in at least one other.	01, 02, 03

Outline

Topic	Number of	f Outcome
	Lecture	
	Hours	
Language API Review	4	O2
o intrinsic data types		
o string manipulation		
o sets, maps, lists, arrays		
0 comparators		
O pattern matching		
o file and stream I/O		
o debugging tools		
 Competitive Programming Strategies 	10	O1, O2
o evaluating difficulties of probler	ns	
o making optimal use of time		
o effective teamwork principles		

0	balancing time/productivity constraints		
0	dynamics of group interaction		
0	simulated competitions		
Apply	ing Standard Algorithms to Problem Solutions	21	O3
0	radix sort		
0	permutations and combinations		
0	backtracking		
0	graph searching		
0	optimization		
0	grids		
0	computational geometry		

Course Outcomes Emphasized in Laboratory Projects / Assignments

Outcome	Number of Weeks	
01		
O2	24 lab projects and assignments,	
O3	2 per week	

Oral and Written Communication:

None

Social and Ethical Implications of Computing Topics:

None

Approximate number of credit hours devoted to fundamental CS topics

i ippi difficite frame of electric flours devoted to ramadification es topics			
Topic	Core Hours	Advanced Hours	
Algorithms:	1.5	0.0	
Software Design:	0	0.0	
Computer Organization and Architecture:	0	0.0	
Data Structures:	1.5	0.0	
Concepts of Programming Languages:	0	0.0	

Theoretical Contents:

None

Problem Analysis Experiences:

12 assignments

Solution Design Experiences:

12 assignments