Knight Foundation School of Computing and Information Sciences

Course Title: Data Structures

Date: 2/12/2018

Course Number: COP 3530

Number of Credits: 3

Subject Area: Programming	Subject Area Coordinator:	
	Janki Bhimani	
	email: jbhimani@fiu.edu	
Catalog Description: Basic concepts of data organization, running time of a program,		
abstract types, data structures including linked lists, n-ary trees, sets and graphs, internal		
sorting. This course will have additional fees.		
Textbook: Data Structures & Problem Solving in Java by Mark Weiss		
References:		
Prerequisites Courses: <u>COP 3337</u> and (<u>MAD 2104</u> or <u>COT 3100</u>)		
Co-requisites Courses: None		

Type: Required

Prerequisites Topics:

- Master the design and implementation of classes using inheritance and polymorphism
- Master the use and implementation of interfaces
- Be familiar with writing recursive methods
- Be familiar with the implementation of linked list data structures
- Be familiar with the Stack & Queue data structures
- Be exposed to the Java Collection interface

Course Outcomes:

- O1. Be familiar with basic techniques of algorithm analysis
- O2. Master writing recursive methods
- O3. Master the implementation of linked data structures such as linked lists and binary trees
- O4. Be familiar with advanced data structures such as balanced search trees, hash tables, priority queues and the disjoint set union/find data structure
- O5. Be familiar with several sub-quadratic sorting algorithms including quicksort, mergesort and heapsort
- O6. Be familiar with some graph algorithms such as shortest path and minimum spanning tree
- O7. Master the standard data structure library of a major programming language (e.g. java.util in Java 5)

Relationship between Course Outcomes and Program Outcomes

BS in CS: Program Outcomes	Course Outcomes
a) Demonstrate proficiency in the foundation areas of Computer Science including mathematics, discrete structures, logic and the theory of algorithms	1, 2, 3, 4, 5, 6, 7
b) Demonstrate proficiency in various areas of Computer Science including data structures and algorithms, concepts of programming languages and computer systems.	1, 2, 3, 4, 5, 6, 7
c) Demonstrate proficiency in problem solving and application of software engineering techniques	1, 2, 3, 4, 5, 6, 7
d) Demonstrate mastery of at least one modern programming language and proficiency in at least one other.	1, 2, 3, 4, 5, 6, 7
e) Demonstrate understanding of the social and ethical concerns of the practicing computer scientist.	
f) Demonstrate the ability to work cooperatively in teams.	
g) Demonstrate effective communication skills.	

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: <u>https://abet.cs.fiu.edu/csassessment/</u>

Outline			
Торіс	Number of Lecture Hours	Outcome	
Review of Java	3		
 Interfaces 			
 Function Objects 			
• Iterators			
 Nested & Inner Classes 			
Algorithm Analysis	6	01	
• Basic Big-Oh			
• Sample $O(N^3), O(N^2), O(N)$ algs			
 Binary Search 			
$\circ \text{Divide & Conquer O(N \log N)}$			
algs			
• Sorting	6	01, 02 & 05	
• Mergesort			
• Quicksort			
• Lower Bounds			
• Other sorts as appropriate			
Java Collection Data Structures	3	07	
• List, ArrayList & LinkedList			
• Set, HashSet & TreeSet			
o Map, HashMap & TreeMap			
• Stacks, Queues, Linked Lists	4	03	
 Includes Java style 			
implementation details, such as			
Iterator class			
Binary Search Trees	4	04	
o including AVL trees			
Hash Tables	3	04	
Priority Queues	3	04	
Shortest Path Algorithms	3	06	
Disjoint Sets	3	O4	

Course Outcomes Emphasized in Laboratory Projects / Assignments

Outcome	Number of Weeks	
02	1 assignment 2 weeks	
07	1 assignment 2 weeks	
03	1 assignment 2 weeks	
04	1 assignment 2 weeks	
06	1 assignment 2 weeks	

Oral and Written Communication: None

Social and Ethical Implications of Computing Topics: None

Approximate number of credit hours devoted to fundamental CS topics

Торіс	Core Hours	Advanced Hours
Algorithms:	1.0	
Software Design:	0	
Computer Organization and Architecture:	0	
Data Structures:	2.0	
Concepts of Programming Languages:	0	

Theoretical Contents: None

Problem Analysis Experiences 5 assignments

Solution Design Experiences:

None

Kilowieuge		
Knowledge Unit	Торіс	Lecture Hours
DS 5	Graphs and Trees	1
AL1	Algorithm Analysis	6
AL2	Greedy algorithms, divide and conquer, dynamic programming, backtracking	4
AL3	Shortest paths, Sorting	5
PF 2	Algorithms and Problem Solving	1
PF 3	Stacks, queues, linked lists, trees, hash tables, priority queues	14
PF 4	Recursion	2
PL 6	Object-Oriented Programming	3
SE 2	Using APIs	3

The Coverage of Knowledge Units within Computer Science Body of Knowledge¹

¹See <u>https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf</u> for a description of Computer Science Knowledge units