Knight Foundation School of Computing and Information Sciences

Course Title: Competitive Programming and Problem Solving

Date: 04/06/2011

Course Number: COP 4516

Number of Credits: 3

Subject Area: Algorithms,	Subject Area Coordinator: Tim Downey
programming	email: downeyt@cis.fiu.edu

Catalog Description: Problem solving for programming competitions. Algorithms, analysis, programming, debugging, group collaboration. Participation in team practices and rigorous individual preparation.

Textbook:

Competitive Programming, by Steven Halim and Felix Halim, Lulu.com, 2010

References:

Programming Challenges, by Steven S. Skiena and Miguel A. Revilla. *Data Structures and Algorithm Analysis in Java 2nd ed*, by Weiss

Prerequisite Courses: <u>COP 3530</u>

Corequisite Courses:

Type: General free elective

Prerequisite Topics:

- P1. Be familiar with basic techniques of algorithm analysis
- P2. Be familiar with writing recursive methods
- P3. Master the implementation of linked data structures such as linked lists and binary trees
- P4. Be familiar with advanced data structures such as maps, sets, and priority queues.
- P5. Be familiar with some graph algorithms such as shortest path and minimum spanning tree
- P6. Master the standard data structure library of a major programming language

Course Outcomes:

O1. Be familiar with standard competitive programming strategies and effective team collaboration techniques

Knight Foundation School of Computing and Information Sciences COP 4516

Competitive Programming and Problem Solving

- O2. Be able to implement efficient solutions to programming problems while working under time pressure
- O3. Be able to recognize the appropriateness and application of standard algorithmic strategies to new and challenging problems.

Relationship between Course Outcomes and Program Outcomes

BS in CS: Program Outcomes	Course Outcomes
a) Demonstrate proficiency in the foundation areas of Computer Science including mathematics, discrete structures, logic and the theory of algorithms	01, 02, 03
 b) Demonstrate proficiency in various areas of Computer Science including data structures and algorithms, concepts of programming languages and computer systems. 	01, 02, 03
c) Demonstrate proficiency in problem solving and application of software engineering techniques	01, 02, 03
 d) Demonstrate mastery of at least one modern programming language and proficiency in at least one other. 	01, 02, 03

Outline

Торіс	Number of Lecture Hours	Outcome
Language API Review	4	O2
 intrinsic data types 		
 string manipulation 		
o sets, maps, lists, arrays		
o comparators		
o pattern matching		
o file and stream I/O		
 debugging tools 		
Competitive Programming Strategies	10	01, 02
 evaluating difficulties of problems 		
 making optimal use of time 		
 effective teamwork principles 		
 balancing time/productivity constraints 		
 dynamics of group interaction 		
 simulated competitions 		

Knight Foundation School of Computing and Information Sciences COP 4516

Competitive Programming and Problem Solving

Applying Standard Algorithms to Problem Solutions	21	03
	-1	00
o radix sort		
 permutations and combinations 		
o backtracking		
 graph searching 		
 optimization 		
0 grids		
 computational geometry 		

Course Outcomes Emphasized in Laboratory Projects / Assignments

Outcome	Number of Weeks	
01		
02	24 lab projects and assignments,	
O3	2 per week	

Oral and Written Communication:

None

Social and Ethical Implications of Computing Topics:

None

Approximate number of credit hours devoted to fundamental CS topics

Торіс	Core Hours	Advanced Hours
Algorithms:	1.5	0.0
Software Design:	0	0.0
Computer Organization and Architecture:	0	0.0
Data Structures:	1.5	0.0
Concepts of Programming Languages:	0	0.0

Theoretical Contents:

None

Problem Analysis Experiences:

12 assignments

Solution Design Experiences:

12 assignments

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: <u>https://abet.cs.fiu.edu/csassessment/</u>