Knight Foundation School of Computing and Information Sciences

Course Title: Introduction to Parallel Computing

Date: 9/26/2019

Course Number: COP 4520

Number of Credits: 3

Subject Area: Programming	Subject Area Coordinator:	
	Janki Bhimani	
	email: jbhimani@fiu.edu	
Catalog Description:		
This course introduces the field of parallel co	omputing. The students will be taught how to	
design efficient parallel programs and how to use parallel computing techniques to solve		
scientific problems.		
1		
Textbook: Parallel Programming in C with MPI and OpenMP		
Michael J. Quinn		
McGraw Hill, 2004. ISBN: 0-07-282256-2		
References: An Intro to Parallel Computing, Design and Analysis of Algorithms, 2/e		
Ananth Grama, Vipin Kumar, Anshul Gupta, and George Karypis		
Addison-Wesley, 2003. ISBN 0-201-64865-2		
Prerequisites Courses: COP 3530 and (CDA 3102 or CDA 4101 or EEL 4709)		

<u>Type:</u> Elective for CS (Systems group)

Prerequisites Topics:

- Programming experience in C or C++
- Basic knowledge of undergraduate level algorithms, data structures, and computer organization

Course Outcomes:

- 1. Be familiar with parallel algorithm design.
- 2. Be familiar with parallel performance analysis.
- 3. Master the MPI programming paradigm.
- 4. Be familiar with POSIX multi-threaded programming.
- 5. Be familiar with OpenMP programming.
- 6. Be exposed to parallel applications.

Knight Foundation School of Computing and Information Sciences COP 4520 Introduction to Parallel Computing

uction	ω	T	aranci	COIL

Outline			
	Торіс	Number of	Outcome
		Lecture Hours	
Introduce	ction to parallel computing	7	1,6
0	Parallel computers		
0	Parallel programming paradigms		
0	Parallel applications		
 Principl 	es of parallel algorithm design	3	1,3
0	Task/channel model		
0	Foster's design methodology		
 Analytic 	cal modeling of parallel algorithms	5	1,2
0	Speedup and efficiency		
0	Amdahl's Law		
0	Gustafson-Barsis's Law		
0	Karp-Flatt Metric		
0	Isoefficiency metric		
• Parallel	programming	6	3,4,5
0	Basic communication operations		
0	Message-Passing Interface (MPI)		
0	Multi-threading		
0	OpenMP		
• Parallel	computing applications	15	3,6
0	Floyd shortest-path algorithm		
0	Dense matrix algorithms		
0	System of linear equations		
0	Documentation classification		
0	Monte Carlo methods		
0	Sorting		
0	Finite difference methods		
0	Fast Fourier Transformation		

Outline

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: https://abet.cs.fiu.edu/csassessment/

Knight Foundation School of Computing and Information Sciences COP 4520 Introduction to Parallel Computing

	Course Outcomes Emphasized in Laboratory Projects / Assignments			
	Outcome	Number of Weeks		
1	Fundamentals of parallel computing	2		
	Outcomes: 1			
2	Collective operations in MPI	2		
	Outcomes: 2,3,4			
3	Parallel algorithm design and performance	2		
	analysis			
	Outcomes: 2,3			
4	Implementation of Cannon's matrix	3		
	multiplication algorithm in MPI			
	Outcomes: 2,3,4			
5	Parallel application: solving linear equations	2		
	Outcomes: 2,6			

Course Outcomes Emphasized in Laboratory Projects / Assignments

Oral and Written Communication

No significant coverage

Social and Ethical Implications of Computing Topics

No significant coverage

Approximate number of credit hours devoted to fundamental CS topics

Торіс	Core Hours	Advanced Hours
Algorithms:		
		1.0
Software Design:		
		1.0
Computer Organization and		
Architecture:		0.25
Data Structures:		
		0.25
Concepts of Programming Languages		
		0.25
Other CS Topics:		
		0.25

Knight Foundation School of Computing and Information Sciences COP 4520 Introduction to Parallel Computing

Theoretical Contents

Торіс	Class time
Performance analysis of	5
parallel algorithms	

Problem Analysis Experiences

1. Parallel computing applications and performance analysis of parallel solutions

Solution Design Experiences

1. Parallel computing applications, including parallel shortest-path algorithm, sorting, matrix multiplication, linear equations, finite difference methods, FFT, etc.

The Coverage of Knowledge Units within Computer Science Body of Knowledge¹

Knowledge Unit	Торіс	Lecture Hours
AL8	Advanced algorithm analysis; parallel	5
	algorithm performance analysis, including	
	speedup, efficiency, Amdahl's law,	
	Gustafson-Basis' Law, Karp-Flatt, and	
	Isoefficiency metrics	
AL11	Parallel algorithm design; parallel	3
	programming paradigms	
OS3	Concurrency; mutual exclusion, process	3
	synchronization, parallel programming	
SE3	Software tools and environments; MPI,	6
	OpenMP, and POSIX threads	
CN4	High-performance computing; parallel	19
	applications.	

¹See <u>https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf</u> for a description of Computer Science Knowledge units