Knight Foundation School of Computing and Information Sciences

Course Title: Operating Systems Principles Date: 9/30/2019

Course Number: COP 4610

Number of Credits: 3

Subject Area: Computer Organization

Subject Area Coordinator: Dong Chen email: dochen@cs.fiu.edu

Catalog Description:

Operating systems design principles and implementation techniques. Address spaces, system call interface, process/threads, interprocess communication, deadlock, scheduling, memory, virtual memory, I/O, file systems.

Textbook: Operating System Concepts, 10th Edition

Silberschatz, Galvin, and Gagne Wiley (ISBN: 1119800366)

References:

Prerequisites Courses: COP 4338 and (CDA 3102 or CDA 4101)

Corequisites Courses: None

Type: Required for CS Major

Prerequisites Topics:

- CPU, cache, memory organization
- Instruction set architecture
- Multithreading
- Fundamental data structures

Course Outcomes:

- 1. Master the functions and structures of operating systems
- 2. Be familiar with issues in the design of operating systems
- 3. Master techniques of memory management
- 4. Master file and storage systems
- 5. Master concepts of process synchronization and communication

Knight Foundation School of Computing and Information Sciences COP 4610

Operating System Principles

Association between Student Outcomes and Course Outcomes

BS in Computing: Student Outcomes	Course Outcomes
1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.	1, 2
2) Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.	3, 4
3) Communicate effectively in a variety of professional contexts.	
4) Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.	
5) Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.	
Program Specific Student Outcomes	
6) Apply computer science theory and software development fundamentals to produce computing-based solutions. [CS]	5
6) Apply security principles and practices to maintain operations in the presence of risks and threats. [CY]	
6) Use systemic approaches to select, develop, apply, integrate, and administer secure computing technologies to accomplish user goals. [IT]	

Assessment Plan for the Course and how Data in the Course are used to assess Student Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: https://abet.cis.fiu.edu/

Knight Foundation School of Computing and Information Sciences COP 4610 Operating System Principles

Outline

Topic	Number of	Outcome
_	Lecture Hours	
Overview	6	1, 2
 Operating system history 		
 Computer-system organization 		
 Operating-system structure 		
Process management	15	2, 5
o Processes		·
o Threads		
 CPU scheduling 		
 Process synchronization 		
 Deadlocks 		
Storage management	9	3
 Memory management 		
 Virtual memory 		
 File-system interface 		
 File-system implementation 		
I/O systems	6	4
o I/O processing		
 Mass-storage structure 		

Course Outcomes Emphasized in Laboratory Projects / Assignments

	Outcome	Number of Weeks
1	Client-server project	6
	Process scheduling, queuing, I/O service	
	Outcome: 1, 3, 5	

Oral and Written Communication:

No significant coverage

Social and Ethical Implications of Computing Topics

No significant coverage

Knight Foundation School of Computing and Information Sciences COP 4610 Operating System Principles

Approximate number of credit hours devoted to fundamental CS topics

Topic	Core Hours	Advanced Hours
Algorithms:		1.0
Software Design:		
Computer Organization and Architecture:		1.0
Data Structures:		1.0
Concepts of Programming Languages:		

Theoretical Contents

Topic	Class time	

Problem Analysis Experiences

Critical section analysis

Solution Design Experiences

- 1. Synchronization of concurrent processes
- 2. Access to shared resources

Knight Foundation School of Computing and Information Sciences COP 4610 Operating System Principles

The Coverage of Knowledge Units within Computer Science Body of Knowledge¹

Knowledge Unit	Topic	Lecture Hours
OS1	Role and history of operating systems,	3
	computer-system structures, client-server	
	systems, hand-held systems	
OS2	Operating-system components, services,	5
	structure, and implementation	
OS3	Critical section, semaphores, process	6
	synchronization; deadlocks detection,	
	prevention, and recovery	
<u>OS4</u>	Processes, threads, CPU scheduling	9
<u>OS5</u>	Memory management, virtual memory	6
<u>OS8</u>	File-system interface, file-system	6
	implementation, I/O systems, mass-storage	
	structure	

¹See https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf for a description of Computer Science Knowledge units