

Knight Foundation School of Computing and Information Sciences

Course Title: Discrete Structures Date: 3/12/2020

Course Number: COT 3100

Number of Credits: 3

Subject Area: Foundations Subject Area Coordinator: Hadi Amini

email: amini@cs.fiu.edu

Catalog Description: Align mathematical and computational concepts by applying

computing to propositional logic, sets, functions, relations, induction, recursion,

combinatorics, Boolean algebra, graph and trees.

Textbook:
Susanna S. Epp, Discrete Mathematics with Applications, 4th Edition, Brooks Cole, 2010,
978-0495391326

References:

MIT OpenCourseWare Mathematics for Computer Science

Prerequisites Courses: MAC-XXXX and COP-XXXX

(passed at least one college level math course and one basic college level programming
course) Corequisite Courses: COP 2210 or COP 2250 or EEL 2880

Type: Required for CS and IT Majors.

This course is acceptable as an alternative to MAD-2104 for CS majors

and to MAD-1100 for IT majors, and satisfies the discrete requirement.

Prerequisites Topics:

1. Solve algebraic equations

2. Selection statements

3. Iteration

4. Encapsulation using functions

5. Writing programs that use selection, iteration and encapsulation

Discrete structures course requires that students must have completed some introductory math

(any MAC-XXXX) and some introductory programming experience (any COP-XXXX) as

prerequisite. Additionally, the students need university level programming experience

(beyond the introductory programming course such as COP-1000) to comprehend the second

half of the Discrete Structures course. For this reason, the students must have either completed

or currently enrolled in COP-2210 or COP-2250 or EEL-2880.

http://www4.cis.fiu.edu/courses/Syllabi/COP_2210.pdf
http://www4.cis.fiu.edu/courses/Syllabi/COP_2250.pdf
http://www4.cis.fiu.edu/courses/Syllabi/EEL_2880.pdf

2

 Knight Foundation School of Computing and Information Sciences

COT 3100

Discrete Structures

Discrete Structures

Course Outcomes:

1. Master definitions and theorems involving sets, relations and functions.

2. Be familiar with propositional logic.

3. Be familiar with mathematical reasoning, including mathematical induction and

recursion.

4. Be exposed to combinatorics.

5. Be familiar with graph theory.

6. Be exposed to Boolean Algebras.

7. Be exposed to computational implementations of topics covered in the other

outcomes.

Relationship between Course Outcomes and Program Outcomes

BS in CS: Program Outcomes Course Outcomes

a) Demonstrate proficiency in the foundation areas of

Computer Science including mathematics, discrete

structures, logic and the theory of algorithms

1, 2, 3, 4, 5, 6

b) Demonstrate proficiency in various areas of

Computer Science including data structures and

algorithms, concepts of programming languages and

computer systems.

c) Demonstrate proficiency in problem solving and

application of software engineering techniques

d) Demonstrate mastery of at least one modern

programming language and proficiency in at least

one other.

e) Demonstrate understanding of the social and ethical

concerns of the practicing computer scientist.

f) Demonstrate the ability to work cooperatively in

teams.

g) Demonstrate effective communication skills.

2

 Knight Foundation School of Computing and Information Sciences

COT 3100

Discrete Structures

Discrete Structures

Assessment Plan for the Course & how Data in the Course are used to

assess Program Outcomes

Outline

Topic Number

of Lecture

Hours

Outcome

1. Sets, Relations, and Functions

1.1. Operations on sets

1.2. Equivalence relations

1.3. Cardinality

10 1,7

2. Logic and Mathematical Reasoning

2.1. Propositional logic

2.2. Mathematical induction and recursion

10 2, 3, 7

3. Combinatorics

3.1. Combinatorial identities

3.2. Binomial theorem

5 4, 7

4. Directed and Undirected Graphs

4.1. Isomorphism of graphs

4.2. Paths

4.3. Adjacency matrices

4.4. Euler paths

4.5. Four-color problem

4.6. Planar graphs

4.7. Trees and tree traversal

10 5, 7

5. Boolean Algebras

5.1. Disjunctive normal form

5.2. Minimization of Boolean functions (Karnaugh

maps)

5 6, 7

Student and Instructor Course Outcome Surveys are administered at the conclusion of

each offering, and are evaluated as described in the School’s Assessment Plan:

https://abet.cs.fiu.edu/csassessment/

https://abet.cs.fiu.edu/csassessment/

3

 Knight Foundation School of Computing and Information Sciences

COT 3100

Discrete Structures

Discrete Structures

Learning Outcomes: (Familiarity → Usage → Assessment)

Sets, Relations, and Functions:

1. Explain with examples the basic terminology of functions, relations, and sets.

[Familiarity]

2. Perform the operations associated with sets, functions, and relations. [Usage]

3. Relate practical examples to the appropriate set, function, or relation model, and

interpret the associated operations and terminology in context. [Assessment]

4. Describe how constructs of a chosen language (e.g., Java) are used to implement sets,

functions, and relations. [Assessment]

Basic Logic:

1. Convert logical statements from informal language to propositional and predicate logic

expressions. [Usage]

2. Apply formal methods of symbolic propositional and predicate logic, such as

calculating validity of formulae and computing normal forms. [Usage]

3. Use the rules of inference to construct proofs in propositional and predicate logic.

[Usage]

4. Describe how symbolic logic can be used to model real-life situations or applications,

including those arising in computing contexts such as software analysis (e.g., program

correctness), database queries, and algorithms. [Usage]

5. Apply formal logic proofs and/or informal, but rigorous, logical reasoning to real

problems, such as predicting the behavior of software or solving problems such as

puzzles. [Usage]

6. Describe the strengths and limitations of propositional and predicate logic.

[Familiarity]

7. Convert logical statements from informal language to propositional and predicate logic

expressions and then to selection statement syntax into a programming language of

choice. [Implementation]

Mathematical Reasoning:

1. Identify the proof technique used in a given proof. [Familiarity]

2. Outline the basic structure of each proof technique (direct proof, proof by

contradiction, and induction) described in this unit. [Usage]

3. Apply each of the proof techniques (direct proof, proof by contradiction, and induction)

correctly in the construction of a sound argument. [Usage]

4. Determine which type of proof is best for a given problem. [Assessment]

5. Explain the parallels between ideas of mathematical and/or structural induction and

recursively defined structures. [Assessment]

6. Explain the relationship between weak and strong induction and give examples of the

appropriate use of each. [Assessment]

7. Identify and trace recursion within a programming language of choice (e.g., Java).

[Usage]

8. Determine if iteration or recursion are best for a given problem.

Combinatorics:

1. Apply counting arguments, including sum and product rules, inclusion-exclusion

principle and arithmetic/geometric progressions. [Usage]

4

 Knight Foundation School of Computing and Information Sciences

COT 3100

Discrete Structures

Discrete Structures

2. Apply the pigeonhole principle in the context of a formal proof. [Usage]

3. Compute permutations and combinations of a set, and interpret the meaning in the

context of the particular application. [Usage]

4. Map real-world applications to appropriate counting formalisms, such as determining

the number of ways to arrange people around a table, subject to constraints on the

seating arrangement, or the number of ways to determine certain hands in cards (e.g., a

full house). [Usage]

5. Solve a variety of basic recurrence relations. [Usage]

6. Analyze a problem to determine underlying recurrence relations. [Usage]

7. Perform computations involving modular arithmetic. [Usage]

8. Describe how a programming language of choice (e.g., Java) could be used to create all

ordered pairs from two sets. [Assessment]

Graphs and Trees:

1. Illustrate by example the basic terminology of graph theory, as well as some of the

properties and special cases of each type of graph/tree. [Familiarity]

2. Describe how to traverse trees and graphs. [Usage]

3. Model a variety of real-world problems in computer science using appropriate forms of

graphs and trees, such as representing a network topology or the organization of a

hierarchical file system. [Usage]

4. Show how concepts from graphs and trees appear in data structures, algorithms, proof

techniques (structural induction), and counting. [Usage]

5. Explain how to construct a spanning tree of a graph. [Usage]

6. Determine if two graphs are isomorphic. [Usage]

Course Outcomes Emphasized in Laboratory Projects / Assignments

Outcome Number of Weeks

Sets and functions computational
implementations: outcomes 1,7

3

Complex selection computational

implementations: outcomes 2,7

2

Recursive computational implementations:
outcomes 3,7

2

Permutation computational implementations:
outcomes 4,7

2

Graph traversal program:

outcomes 5,7

3

Boolean statements computational
implementation: outcomes 6,7

1

5

 Knight Foundation School of Computing and Information Sciences

COT 3100

Discrete Structures

Discrete Structures

Oral and Written Communication

No significant coverage

Written Reports Oral Presentations

Number

Required

Approx. Number

of pages

Number

Required

Approx. Time for

each

0 0 0 0

Social and Ethical Implications of Computing Topics

No significant coverage

Topic Class time student performance measures

Approximate number of credit hours devoted to fundamental CS topics

Fundamental CS Area Core Hours Advanced Hours

Algorithms: 0.5

Software Design:

Computer Organization and

Architecture:

Data Structures: 0.5

Concepts of Programming

Languages

Theoretical Contents

Topic Class time

Discrete structures 40 hours

Problem Analysis Experiences

6

 Knight Foundation School of Computing and Information Sciences

COT 3100

Discrete Structures

Discrete Structures

Solution Design Experiences

The Coverage of Knowledge Units within Computer Science Body of

Knowledge
1

Knowledge Unit Topic Type Lecture Hours

DS1. Functions, relations, and

sets

1 Tier 1 10

DS2. Basic logic 2.1, 5 Tier 1 10

DS3. Proof techniques 2.2 Tier 1 5

DS4. Basics of counting 3 Tier 1 5

DS5. Graphs and trees 4 Tier 1 10

1
See Appendix A in Computer Science Curricula 2013. Final Report of the IEEE and ACM Joint Task

Force on Computing Curricula, available at:

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

