Course Title: Introduction to Computational Geometry
Date: 02/17/2014

Course Number: COT 4521

Number of Credits: 3

Subject Area: Computer Science and Computing Technologies
Subject Area Coordinator: Hadi Amini
email: amini@cs.fiu.edu

Catalog Description: Study of efficient algorithms to solve geometric problems. Topics covered include convex hulls, Voronoi diagrams, Delaunay triangulations, arrangements, search and intersection, and motion planning.

Textbook:

References:

Other Related Material: Lecture notes; Related journal articles and conference papers.

Prerequisites Courses: COP 3530
Corequisites Courses: N/A

Type: Elective for CS (Foundations group)

Prerequisites Topics:
- Data structure, Algebra.
- Basic programming skills.

Objectives:
Students will get knowledge of geometric data structures and state-of-the-art computational solutions to different geometric problems, and learn their applications in wide range of disciplines.

Major Topics:
Introduction to Computational Geometry

- Geometric Data Structures
- Line Segment Intersection
- Linear Programming
- Range Searching
- Point Location
- Voronoi Diagrams
- Arrangement and Duality
- Delaunay Triangulations
- Convex Hulls
- Robot Motion Planning

Learning Outcomes:

1. Be familiar with the basic geometric concepts;
2. Master the geometric data structures;
3. Be familiar with the optimization tool: linear programming;
4. Master the fundamental algorithms for line segment intersection, range searching, and point location.
5. Be familiar with the fundamental algorithms for Voronoi diagrams, Delaunay triangulations, and arrangement.
6. Be familiar with the algorithms for convex hulls;
7. Be familiar with the motion planning methods;
8. Be familiar with the usage of computational geometric techniques in real-world applications.
Course Outline

<table>
<thead>
<tr>
<th>Major Topics</th>
<th>Number of Lecture Hours</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Computational Geometry</td>
<td>2</td>
<td>1, 8</td>
</tr>
<tr>
<td>Geometric Data Structures</td>
<td>2</td>
<td>2, 8</td>
</tr>
<tr>
<td>Linear Programming</td>
<td>2</td>
<td>3, 8</td>
</tr>
<tr>
<td>Line Segment Intersection</td>
<td>2</td>
<td>4, 8</td>
</tr>
<tr>
<td>Range Searching</td>
<td>2</td>
<td>4, 8</td>
</tr>
<tr>
<td>Point Location</td>
<td>2</td>
<td>4, 8</td>
</tr>
<tr>
<td>Voronoi Diagrams</td>
<td>2</td>
<td>5, 8</td>
</tr>
<tr>
<td>Arrangement and Duality</td>
<td>2</td>
<td>5, 8</td>
</tr>
<tr>
<td>Delaunay Triangulations</td>
<td>2</td>
<td>5, 8</td>
</tr>
<tr>
<td>Convex Hulls</td>
<td>2</td>
<td>6, 8</td>
</tr>
<tr>
<td>Robot Motion Planning</td>
<td>2</td>
<td>7, 8</td>
</tr>
</tbody>
</table>

Course Outcomes Emphasized in Laboratory Projects / Assignments

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>2 week: Assignment 1</td>
</tr>
<tr>
<td>3, 4</td>
<td>2 week: Assignment 2</td>
</tr>
<tr>
<td>5, 8</td>
<td>2 week: Assignment 3; 1 week: Term Project.</td>
</tr>
<tr>
<td>6, 8</td>
<td>2 week: Assignment 4; 1 week: Term Project.</td>
</tr>
<tr>
<td>7, 8</td>
<td>2 week: Assignment 5; 1 week: Term Project.</td>
</tr>
</tbody>
</table>

- 5 two-week period assignments (problem sets) to evaluate the students’ learning.
- 1 term project on learning Computational Geometry Algorithms Library (CGAL, https://www.cgal.org/) by carrying out 3 small and coherent projects.
Oral and Written Communication:

- Number of written reports: 1 for the term project.
- Approximate number of pages for term project report: 10 (including figures, tables, references).
- Number of assignments: 5 (each is due in two weeks from the day of assignment).
- Number of required oral presentations: 1 for the term project.
- Approximate time for each presentation: 20 minutes for each group (each has at most 4 students).

Grading Policy:

- Assignments: 50%
- Term Project Presentation: 20%
- Term Project Report and Program: 25%
- Participation: 5%

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School’s Assessment Plan: https://abet.cs.fiu.edu/csassessment/