Knight Foundation School of Computing and Information Sciences

Course Title: Quantum Algorithms

Date: 11/7/2022

Course Number: COT 5600

Number of Credits: 3

Catalog Description:		
This course introduces basic concepts in quantum theory, applications of quantum		
computing, and a review of quantum algorithms.		
Textbook: "Quantum Computation and Quantum Information" (10th Ed)		
Nielsen and Chuang		
ISBN-13: <u>978-1-107-00217-3</u>		
References: "Quantum Computing for Computer Scientists" (8th Ed)		
Yanofsky and Mannucci		
ISBN: 9780521879965		
Prerequisites: <u>COT 5407</u> or <u>COT 6405</u> or permission of the instructor		
Corequisites: None		

<u>Type:</u> Elective

Prerequisites Topics:

- Linear algebra
- Data structures
- Algorithm analysis

Course Outcomes:

- 1. Describe fundamental concepts of quantum computing [Understanding]
- 2. Discuss quantum computer architecture [Understanding]
- 3. Analyze standard quantum algorithms [Analyzing]
- 4. Summarize advanced quantum algorithms [Understanding]
- 5. Design and evaluate implementation of quantum algorithms [Creating]

Knight Foundation School of Computing and Information Sciences COT 5600 Quantum Algorithms

Outline				
Торіс	No. of Lecture Hours	Outcome		
 Overview of Quantum Computing Basic quantum mechanics Classical vs Quantum systems Quantum computer architectures Complex Numbers Linear Algebra – vector and matrix operations 	4	1		
 Quantum States and Quantum Gates Dirac notation, Bloch sphere, Hilbert space Quantum superposition Single qubit gates Multiple qubit gates Quantum entanglement, Bell state 	4	2		
 Standard Quantum Algorithms Deutsch-Jozsa Algorithm Bernstein-Vazirani Algorithm Simon's Algorithm Grover's Algorithm Quantum Fourier Transform Shor's Algorithm 	12	3		
 Advanced Quantum Algorithms Quantum Counting Quantum Walk Search Algorithm Quantum Teleportation Quantum error correcting code Quantum Key Distribution 	6	4, 5		
 Challenges in Quantum Technology Quantum measurement Cloning theorem Scalability in real quantum systems 	4			

2

Knight Foundation School of Computing and Information Sciences COT 5600 Quantum Algorithms

\sim				
	Outcome	Number of Weeks		
1	Quantum mechanics & linear algebra exercises Outcomes: 1	2		
2	Quantum circuit design Outcomes: 2	2		
3	Implementation of a simple quantum algorithms Outcomes: 3	3		
4	Implementation of an advanced quantum algorithm Outcomes: 4, 5	5		

Course Outcomes Emphasized in Laboratory Projects / Assignments