Course Title: Quantum Algorithms

Course Number: COT 5600

Number of Credits: 3

Catalog Description: This course introduces basic concepts in quantum theory, applications of quantum computing, and a review of quantum algorithms.

Textbook: “Quantum Computation and Quantum Information” (10th Ed)
Nielsen and Chuang

References: "Quantum Computing for Computer Scientists" (8th Ed)
Yanofsky and Mannucci
ISBN: 9780521879965

Prerequisites: COT 5407 or COT 6405 or permission of the instructor

Corequisites: None

Type: Elective

Prerequisites Topics:

- Linear algebra
- Data structures
- Algorithm analysis

Course Outcomes:

1. Describe fundamental concepts of quantum computing [Understanding]
2. Discuss quantum computer architecture [Understanding]
3. Analyze standard quantum algorithms [Analyzing]
4. Summarize advanced quantum algorithms [Understanding]
5. Design and evaluate implementation of quantum algorithms [Creating]
Outline

<table>
<thead>
<tr>
<th>Topic</th>
<th>No. of Lecture Hours</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| • Overview of Quantum Computing
 o Basic quantum mechanics
 o Classical vs Quantum systems
 o Quantum computer architectures
 o Complex Numbers
 o Linear Algebra – vector and matrix operations | 4 | 1 |
| • Quantum States and Quantum Gates
 o Dirac notation, Bloch sphere, Hilbert space
 o Quantum superposition
 o Single qubit gates
 o Multiple qubit gates
 o Quantum entanglement, Bell state | 4 | 2 |
| • Standard Quantum Algorithms
 o Deutsch-Jozsa Algorithm
 o Bernstein-Vazirani Algorithm
 o Simon’s Algorithm
 o Grover’s Algorithm
 o Quantum Fourier Transform
 o Shor’s Algorithm | 12 | 3 |
| • Advanced Quantum Algorithms
 o Quantum Counting
 o Quantum Walk Search Algorithm
 o Quantum Teleportation
 o Quantum error correcting code
 o Quantum Key Distribution | 6 | 4, 5 |
| • Challenges in Quantum Technology
 o Quantum measurement
 o Cloning theorem
 o Scalability in real quantum systems | 4 |
<table>
<thead>
<tr>
<th>Course Outcomes Emphasized in Laboratory Projects / Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome</td>
</tr>
<tr>
<td>1 Quantum mechanics & linear algebra exercises</td>
</tr>
<tr>
<td>Outcomes: 1</td>
</tr>
<tr>
<td>2 Quantum circuit design</td>
</tr>
<tr>
<td>Outcomes: 2</td>
</tr>
<tr>
<td>3 Implementation of a simple quantum algorithms</td>
</tr>
<tr>
<td>Outcomes: 3</td>
</tr>
<tr>
<td>4 Implementation of an advanced quantum algorithm</td>
</tr>
<tr>
<td>Outcomes: 4, 5</td>
</tr>
</tbody>
</table>