School of Computing and Information Sciences

Course Title: Randomized Algorithms Date: 2/27/2015

Course Number: COT-6446

Number of Credits: 3

Subject Area: Algorithms	Subject Area Coordinator:	
	Deng Pan	
	email: pand@cs.fiu.edu	

Catalog Description:

Topics include the basic concept of randomized algorithms, commonly used tools and techniques for the design and analysis of randomized algorithms, and their applications in many core computer science areas.

Textbook: "Randomized Algorithms" by *Rajeev Motwani* and *Prabhakar Raghavan*, Cambridge University Press, 1995 (ISBN-13: 978-0521474658).

References:

- "Probability and Computing: Randomized Algorithms and Probabilistic Analysis", by *Michael Mitzenmacher* and *Eli Upfal*, Cambridge University Press, 2005 (ISBN-13: 978-0521835404).
- "The Probabilistic Method", by Noga Alon and Joel Spencer, John Wiley & Sons, 2008 (ISBN-13: 978-0470170205).
- Lecture notes from similar courses taught at MIT, Princeton, Berkeley, CMU, etc.

Prerequisites Courses: COT-5407

Corequisites Courses: None

Type: Elective for MSCS, MSIT, MSTN, and Ph.D. students

Prerequisites Topics:

- Discrete mathematics, probability theory
- Algorithms
- Programming

School of Computing and Information Sciences COT-6446 Randomized Algorithms

Course Outcomes:

- 1. Understand the basic concept of randomized algorithms
- 2. Master the moment method, deviations and tail inequalities
- 3. Master random walks and their applications
- 4. Understand the probabilistic method
- 5. Understand how to apply tools developed to data structures and algorithms
- 6. Present a research paper that uses randomized algorithms

School of Computing and Information Sciences COT-6446 Randomized Algorithms

Outline

Topic	Lecture Hours	Outcome
 Introduction Background and history of randomized algorithms 	3	1
Deviation boundsMoments and deviationsTail bounds	6	2
 Random walks Markov chains Random walks on graphs Expanders 	6	3
 The probabilistic method Overview The Lovasz local lemma Conditional probability method 	6	4
 Applications Data structure (skip lists, hash table, etc) Graph algorithms Property testing 	9	5
Students presentations	6	6

School of Computing and Information Sciences COT-6446 Randomized Algorithms

Oral and Written Communication:

- Number of written reports: 1 for the term project.
- Approximate number of pages for term project: 10 pages.
- Number of assignments: **3** (3 problem sets).
- Number of required oral presentations: **One** for the term project.
- Approximate time for each presentation: about **30 minutes** for each student