Knight Foundation School of Computing and Information Sciences

Course Title: Computer Science Education for Elementary School Children

Date: 10/23/2017

Course Number: IDC 4010C

Number of Credits: 4

Subject Area: Interdisciplinary	Subject Area Coordinator: Mark Weiss
Computing	email: weiss@cis.fiu.edu

Catalog Description: Provide teachers with the knowledge of **introductory** Computer Science topics, as well as the pedagogy on how to teach the topics. Computer Science topics include computational thinking, logic, visual programming, and social issues related to computer technologies including Internet safety.

Textbooks: Online Curriculum: <u>https://studio.code.org/s/coursea</u> thru <u>https://studio.code.org/s/coursef</u> by Code.org for K thru 5.

References: <u>https://code.org/files/CSF_CoursesA-F_Curriculum_Guide.pdf</u>

Prerequisite Courses: Corequisites Courses:

Type: General Elective

Prerequisite Topics: (none)

Course Outcomes:

O1. Be able to explain, create, follow, and debug algorithms to solve problems.

O2. Demonstrate mastery of elementary programming techniques like conditionals, loops and

nested loops, variables, abstractions, functions, and parameters passed to functions.

O3. Be able to understand how the internet can be used by society, and the digital footprints

left behind as well as safety concerns.

O4. Be able to apply computing knowledge to create art, make a story, solve puzzles, and

games using Art and Play Lab.

Knight Foundation School of Computing and Information Sciences IDS 4010C

Computer Science Education for Elementary School Children

This course should be taught by FIU faculty that have completed a 1-day Code.org workshop for K-5 Curriculum, as scheduled in the website: https://code.org/educate/professional-learning/cs-fundamentals-directory

Outline

Торіс	Number of	Outcome
	Lecture Hours	
Computational Thinking	10	01
 Algorithms applied to: 		
 Solving puzzles 		
 Programming using graph paper 		
 Debugging graph paper algorithms 		
 Building paper planes, planting seeds, 		
playing games		
Elementary Programming	15	O2
 Conditionals & Loops to: 		
 Traverse a maze to collect treasure 		
 Create art patterns 		
 Problem-solve & think critically 		
 Write dance steps 		
 Distinguish when to use counter loops vs 		
while loops		
 Play card & dice games 		
• Abstractions to:		
 Create functions 		
 Call functions 		
 Pass parameters to functions 		
Computers and Society	5	03
• URLs, IP addresses, and DNS		
 Digital safety 		
 Avoiding Cyberbullying 		
• Digital footprints		
 Crowdsourcing 		
Programming in Art Lab/Play Lab	15	O4
• Create animated, event-driven game		
• Create Flappy Bird to detect mouse clicks &		
collision		
• Build a shareable, online game with various kid-		
friendly themes		
• Understanding & implementing a design process		
for projects		

Knight Foundation School of Computing and Information Sciences IDS 4010C Computer Science Education for Elementary School Children

Course Outcomes Emphasized in Laboratory Projects / Assignments

Projects and assignments will interactive lessons presented by students, as well as programming, projects done individually and collaboratively. Teaching demonstrations should be completed in a laboratory environment that includes short lectures by the instructor.

Outcome	
O1	Students will be able to explain, create,
	follow, and debug algorithms to solve
	problems.
O2	Students will demonstrate mastery of
	elementary programming techniques
	like conditional branching, loops and
	nested loops, abstractions, functions,
	and parameters passed to functions.
O3	Students will be able to understand
	how the internet can be used by
	society, and the digital footprints left
	behind, as well as safety concerns.
O4	Students will be able to apply
	computing knowledge to create art,
	make a story, solve puzzles, and games
	using Art and Play Lab.

Oral and Written Communication:

• Written and oral discussions of social issues in computing

- **Theoretical Contents:**
 - Abstraction
 - Basic algorithmic thinking

Problem Analysis Experiences:

None

Solution Design Experiences:

• Weekly teaching labs, teaching lessons, programming/puzzles

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: https://abet.cs.fiu.edu/csassessment/