School of Computing and Information Sciences

Course Title: Software Engineering I Date: May 16, 2012

Course Number: CEN 4010

Number of Credits: 3

Subject Area: Software Engineering	Subject Area Coordinator:		
	Peter Clarke		
	email: clarkep@cis.fiu.edu		
Catalog Description: Software Process Model, Software Analysis and Specification, Software Design, Software Testing			
Textbook: Bernd Bruegge, Allen H Dutoit, "Object-Oriented Software Engineering: Using UML, Patterns, and Java", 3rd Edition, Prentice Hall, ISBN 0136061257.			
References:			
Prerequisites Courses: CGS 3095 and COP 3530 and COP 4710			
Corequisites Courses: CNT 4713			

Type: Required for CS Major

Prerequisites Topics:

- Programming
- Data Structures
- Oral and written communication skills

Course Outcomes:

- 1. Be familiar with the Software Development Life Cycle
- 2. Master the techniques to gather and specify the requirements of a medium-size software system using UML
- 3. Master the techniques to design and implement a medium-size software system
- 4. Be familiar with software testing techniques
- 5. Be familiar with system walkthroughs
- 6. Be familiar with software documentation
- 7. Be familiar with working in a small software development team
- 8. Demonstrate the ability to communicate the details of the technical solution through verbal and written modes.

Relationship between Course Outcomes and Program Outcomes

BS in CS: Program Outcomes	Course Outcomes
a) Demonstrate proficiency in the foundation areas of Computer Science including mathematics, discrete structures, logic and the theory of algorithms	
b) Demonstrate proficiency in various areas of Computer Science including data structures and algorithms, concepts of programming languages and computer systems.	3, 4
c) Demonstrate proficiency in problem solving and application of software engineering techniques	1, 2, 3, 4, 5, 6, 7
d) Demonstrate mastery of at least one modern programming language and proficiency in at least one other.	
e) Demonstrate understanding of the social and ethical concerns of the practicing computer scientist.	
f) Demonstrate the ability to work cooperatively in teams.	2, 5, 7
g) Demonstrate effective communication skills.	2, 5, 6, 7

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: http://www.cis.fiu.edu/programs/undergrad/cs/assessment/

Outline

Tr • -	NT	0-4
Topic	Number of	Outcome
	Lecture	
	Hours	
Introduction to Software Engineering	6	1, 5, 6, 7
o Concepts		
 Life Cycle Model 		
o Products		
o Reviews		
 Development Team 		
Software Modeling	6	1, 2, 6
o Concepts		
 Modeling with UML 		
Requirement Gathering and Analysis	12	1, 2, 5, 6, 7
 Concepts and Activities 		
 Functional Requirement 		
 Scenarios and Use Cases 		
 Non-functional requirements 		
 Requirement Validation 		
Software Design	12	1, 3, 5, 6, 7
 System Design 		
 Design Goals 		
 Cohesion and Coupling 		
Persistent Data		
 Access Control 		
 Object Design 		
Object Interface		
Invariants		
 Pre and post conditions 		
• Testing	6	4, 5
 Testing Concepts 		
 Test Planning 		
 Unit Testing 		
 Integration Testing 		
 Usability Testing 		

Course Outcomes Emphasized in Laboratory Projects / Assignments

	Outcome	Number of Weeks
1.	Software Requirement and Analysis	4
	Model	
	Outcomes: 1,2,6,7	
2.	Software Design Document	4
	Outcomes: 1,3,6,7	
3.	Final Software Project	4
	Demonstration	
	Outcomes: 1,2,3,4,5,6,7	

Oral and Written Communication:

Written Reports		Oral Presentations	
Number	Approx. Number	Number	Approx. Time for
Required	of pages for each	Required	each
3	30	2	15 minutes per group
(Software			(5 minutes per student)
Requirement,			
Design Document			
and Final System			
Document)			

Social and Ethical Implications of Computing Topics:

No significant coverage

Topic	Class time	Student Performance Measures
_		

Approximate number of credit hours devoted to fundamental CS topics

Topic	Core Hours	Advanced Hours
Algorithms:		
Software Design:		2.0
Computer Organization and Architecture:		
Data Structures:		
Concepts of Programming Languages:		

Theoretical Contents

Topic	Class time
Invariants, pre and post	1.0
conditions	

Problem Analysis Experiences

Software requirement and analysis model

Solution Design Experiences

System Design using Architectural Patterns
 Detailed Object design using Design Patterns

The Coverage of Knowledge Units within Computer Science Body of Knowledge¹

Knowledge Unit	Topic	Lecture Hours
<u>SE 1</u>	Fundamental Design concepts and	12
	principles, Software Architecture,	
	Object-Oriented Design	
<u>SE 4</u>	Software Life-Cycle and Process Models	6
<u>SE 5</u>	Requirement Elicitation, Requirements	12
	Analysis Modeling Techniques,	
	Functional and Nonfunctional	
	requirements, Basic Concepts of Formal	
	specification techniques	
<u>SE 6</u>	Validation Planning, Testing	6
	Fundamentals, Black-box and White-box	
	testing, Unit, integration, validation and	
	system testing, Object-Oriented Testing,	
	Inspections	
<u>SE 8</u>	Team Management, Software	2
	measurement and scheduling techniques,	
	Project management tools	
<u>SE 10</u>	Pre and post assertions	1

¹See <u>http://www.computer.org/education/cc2001/final/chapter05.htm</u> for a description of Computer Science Knowledge units