School of Computer Science

Course Title: Operating Systems Principles

Date: March 29, 2009

Course Number: COP-4610

Number of Credits: 3

Subject Area: Computer Systems	Subject Area Coordinator: S. Masoud Sadjadi	
	email: sadjadi@cs.fiu.edu	
Catalog Description:		
Operating systems design principles and imp	lementation techniques. Address spaces,	
system call interface, process/threads, interprocess communication, deadlock, scheduling,		
memory, virtual memory, I/O, file systems.		
Textbook: Operating System Concepts, 6 th Edition		
Silberschatz, Galvin, and Gagne		
John Wiley (ISBN: 0471250600)		
References:		
Prerequisites Courses: CDA 4101 and COP 4338		
Corequisites Courses:		

Type: Required

Prerequisites Topics:

- CPU, cache, memory organization
- Instruction set architecture
- Multithreading
- Fundamental data structures

Course Outcomes:

- 1. Master the functions and structures of operating systems
- 2. Be familiar with issues in the design of operating systems
- 3. Master techniques of memory management
- 4. Master file and storage systems
- 5. Master concepts of process synchronization and communication

School of Computing and Information Sciences COP-4610 Operating System Principles

Relationship between Course Outcomes and Program Outcomes

BS in CS: Program Outcomes	Course Outcomes
a) Demonstrate proficiency in the foundation areas of Computer Science including mathematics, discrete structures, logic and the theory of algorithms	
b) Demonstrate proficiency in various areas of Computer Science including data structures and algorithms, concepts of programming languages and computer systems.	1,2,3,4
c) Demonstrate proficiency in problem solving and application of software engineering techniques	5
d) Demonstrate mastery of at least one modern programming language and proficiency in at least one other.	
e) Demonstrate understanding of the social and ethical concerns of the practicing computer scientist.	
f) Demonstrate the ability to work cooperatively in teams.	
g) Demonstrate effective communication skills.	

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: http://www.cis.fiu.edu/programs/undergrad/cs/assessment/

Outline			
Торіс	Number of Lecture Hours	Outcome	
Overview	6	1,2	
 Operating system history 			
 Computer-system organization 			
 Operating-system structure 			
Process management	15	2,5	
o Processes			
• Threads			
• CPU scheduling			
 Process synchronization 			
 Deadlocks 			
Storage management	9	3	
 Memory management 			
 Virtual memory 			
 File-system interface 			
 File-system implementation 			
• I/O systems	6	4	
 I/O processing 			
 Mass-storage structure 			

Course Outcomes Emphasized in Laboratory Projects / Assignments

	Outcome	Number of Weeks
1	Client-server project	6
	Process scheduling, queuing, I/O service	
	Outcome: 1,3,5	

Oral and Written Communication:

No significant coverage

Social and Ethical Implications of Computing Topics

No significant coverage

Approximate number of credit hours devoted to fundamental CS topics

Торіс	Core Hours	Advanced Hours
Algorithms:		1.0
Software Design:		
Computer Organization and Architecture:		1.0
Data Structures:		1.0
Concepts of Programming Languages:		

Theoretical Contents

Торіс	Class time

Problem Analysis Experiences

1. Critical section analysis

Solution Design Experiences

- 1. Synchronization of concurrent processes
- 2. Access to shared resources

The Coverage of Knowledge Units within Computer Science Body of Knowledge¹

Knowledge Unit	Торіс	Lecture Hours
<u>OS1</u>	Role and history of operating systems,	3
	computer-system structures, client-server	
	systems, hand-held systems	
<u>OS2</u>	Operating-system components, services,	5
	structure, and implementation	
<u>OS3</u>	Critical section, semaphores, process	6
	synchronization; deadlocks detection,	
	prevention, and recovery	
<u>OS4</u>	Processes, threads, CPU scheduling	9
<u>OS5</u>	Memory management, virtual memory	6
<u>OS8</u>	File-system interface, file-system	6
	implementation, I/O systems, mass-storage	
	structure	

¹See <u>http://www.computer.org/education/cc2001/final/chapter05.htm</u> for a description of Computer Science Knowledge units