Knight Foundation School of Computing and Information Sciences

Course Title: Theory of Algorithms

Date: 11/07/2003

Course Number: MAD 3512

Number of Credits: 3

Subject Area:	Subject Area Coordinator: Hadi Amini	
Foundations		
	email: amini@cs.fiu.edu	
Catalog Description: Strings, formal languages, finite state machines, Turing machines,		
primitive recursive and recursive functions, recursive unsolvability.		

Typical Textbook:

Peter Linz, *An Introduction to Formal Languages and Automata, Third Edition.* (Jones and Bartlett, 2001)

References:

Prerequisite Courses: MAD 2104 and COT 3420.

Corequisite Courses: None

Type: Required

Prerequisites Topics:

- Familiarity with definitions and theorems involving sets, relations, and functions.
- Familiarity with mathematical induction and recursion.
- Familiarity with formal proofs.

Course Outcomes:

- O1. Be familiar with formal languages.
- O2. Master finite state machines.
- O3. Master Turing machines.
- O4. Be familiar with primitive recursive and recursive functions.
- O5. Be exposed to recursive unsolvability.

Knight Foundation School of Computing and Information Sciences MAD 3512

Theory of Algorithms

Outline

	Торіс	Number of Lecture Hours	Outcome
1.	Regular Languages	<u>24</u>	<u>O1, O2</u>
	1.1. Regular Expressions		
	1.2. Regular Grammars		
	1.3. Deterministic Finite Automata		
	1.4. Nondeterministic Finite Automata		
	1.5. Minimizing DFAs		
	1.6. Closure and decidability properties		
	1.7. The pumping lemma for regular languages		
2.	Context-Free Languages	<u>4</u>	<u>O1</u>
	2.1. Context-free grammars		
	2.2. Parsing and ambiguity		
3.	Recursive and Recursively Enumerable Languages	<u>8</u>	O3, O5
	3.1. Turing Machines		
	3.2. The Church-Turing Thesis		
	3.3. A Universal Turing Machine		
	3.4. Undecidable problems		
4.	Other Models of Computation	<u>4</u>	<u>O4</u>
	4.1. Recursive Functions		
	4.2. Primitive Recursive Functions		

Course Outcomes Emphasized in Laboratory Projects / Assignments

Outcome	Number of Weeks
O1	4
O2	4
O3	2
O4	1
O5	2

Oral and Written Communication:

No significant coverage

Social and Ethical Implications of Computing Topics

No significant coverage

Knight Foundation School of Computing and Information Sciences MAD 3512 Theory of Algorithms

Approximate number of credit hours devoted to fundamental CS topics

Topic	Core Hours	Advanced Hours
Algorithms:		1.0
Software Design:		
Computer Organization and		
Architecture:		
Data Structures:		
Concepts of Programming		
Languages:		

Theoretical Contents

Topic	Class time
Formal languages and automata	40 hours

Problem Analysis Experiences

No significant coverage

Solution Design Experiences

No significant coverage

The Coverage of Knowledge Units within Computer Science Body of Knowledge¹

Knowledge Unit	Topic	Lecture Hours
AL5. Basic computability	1, 2, 3, 4	20
AL7. Automata theory	1, 2, 3, 4	20

Assessment Plan for the Course & how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: https://abet.cs.fiu.edu/csassessment/

¹See https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf for a description of Computer Science Knowledge units