Knight Foundation School of Computing and Information Sciences

Course Title: Capstone II Date: 11/22/2019

Course Number: CIS 4951

Number of Credits: 2

Subject Area: Knowledge focus groups covered in the curriculum of the BS in Computer Science.

Subject Area Coordinator: Masoud Sadjadi
email: sadjadi@fiu.edu

Catalog Description: Students work on faculty supervised projects in teams of up to 5 members to design and implement solutions to problems utilizing knowledge obtained across the spectrum of Computer Science courses.

Textbook: No text book required

References:

Prerequisites Courses: CIS 3950 (Capstone I) and Senior standing.

Corequisites Courses: None

Type: Required for CS Major

Prerequisites Topics:

- Software development process
- Basic project management concepts
- Domain specific knowledge (for project being developed)

Course Outcomes:

- 1. Mastery of problem formulation.
- 2. Demonstrate mastery of specifying the requirements of a problem.
- 3. Demonstrate mastery of designing the solution to a problem.
- 4. Demonstrate mastery of realizing the solution to a problem.
- 5. Demonstrate the ability to validate and evaluate the solution to a problem.
- 6. Demonstrate the ability to manage a semester long project.
- 7. Demonstrate the ability to work effectively in a project team.
- 8. Demonstrate the ability to think logically and critically when developing the solution to a given problem.
- 9. Demonstrate the ability to apply concepts learned in various courses when developing the solution to a given problem.
- 10. Demonstrate the ability to communicate the details of the technical solution through verbal and written modes.
- 11. Demonstrate the ability to incorporate ethical issues into the project development and documentation process.

Relationship between Course Outcomes and Program Outcomes

BS in CS: Program Outcomes	Course Outcomes
a) Demonstrate proficiency in the foundation areas of Computer Science including mathematics, discrete structures, logic and the theory of algorithms	1, 2, 3, 4, 5, 9
b) Demonstrate proficiency in various areas of Computer Science including data structures and algorithms, concepts of programming languages and computer systems.	1, 2, 3, 4, 5, 8, 9
c) Demonstrate proficiency in problem solving and application of software engineering techniques	1, 2, 3, 4, 5, 6, 7, 8, 9
d) Demonstrate mastery of at least one modern programming language and proficiency in at least one other.	4, 9
e) Demonstrate understanding of the social and ethical concerns of the practicing computer scientist.	11, 9
f) Demonstrate the ability to work cooperatively in teams.	7
g) Demonstrate effective communication skills.	10, 9

Assessment Plan for the Course and how Data in the Course are used to assess Program Outcomes

Student and Instructor Course Outcome Surveys are administered at the conclusion of each offering, and are evaluated as described in the School's Assessment Plan: https://abet.cs.fiu.edu/csassessment/

Outline

	Topic	Number of	Outcome	
		Lecture Hours		
• Project	management	4	1, 2, 7, 8, 10, 11	
0	Organization			
0]	Planning			
o l	Monitoring			
• Problem	n Formulation	4	1, 2, 7, 8, 10	
0]	Motivation			
0]	Problem feasibility			
0]	Problem statement			
Require	ments Specification	4	1, 3, 7, 8, 9, 10, 11	
0]	Domain analysis			
0	Objectives of the solution			
0	Validation adequacy			
	criteria			
• Design		4	1, 4, 6, 7, 8, 9, 10	
0]	Formulation of a plan to			
i	implement requirements			
0 1	Limits on scope of			
5	solution			
• Realizat	tion	4	1, 5, 6, 7, 8, 9, 10	
0]	Realize solution from			
(design			
• Validati	ion/Evaluation	4	1, 6, 7, 8, 9, 10	
0	Check solution against			
1	requirements using			
	adequacy criteria			
0	Compare solution to			
	alternative solutions.			

Course Outcomes Emphasized in Laboratory Projects / Assignments

Outcome	Number of Weeks
1. Project Plan	variable 1 - 3
Outcomes: 1, 2, 7, 8, 10, 11	
2. Requirements Specification	variable 1 - 3
Outcomes: 1, 2, 7, 8, 10, 11	
3. Solution Design	variable 1 - 3
Outcomes: 1, 3, 7, 8, 9, 10	
4. Final System Project	variable 1 - 3
Outcomes: 1,2,3,4,5,6, 7, 8, 9, 10, 11	

Oral and Written Communication:

Written Reports		Oral Presentations	
Number Required	Approx. Number of	Number Required	Approx. Time for
	pages		each
4	Variable (1-30)	at least 3 no more	15 minutes per
(Project Plan,		than 5	group (5 minutes
Requirements			per student)
Document, Design			
Document, Final			
Project Document)			

Social and Ethical Implications of Computing Topics

Topic	Class time	student performance measures
Intellectual property -		Written reports – Requirements
Patents, trademarks,		document and Final Project
copyrights of other similar		Document.
products, and licensing of		
final product		
Privacy – privacy		Written reports – Requirements
protection		document and Final Project
		Document.
Economic issues – pricing		
strategies		

Approximate number of credit hours devoted to fundamental CS topics

Topic	Core Hours	Advanced Hours
Algorithms:		0.5
Software Design:		0.5
Computer Organization and Architecture:		0.5
Data Structures:		0.5
Concepts of Programming Languages		0.5

Theoretical Contents

Topic	Class time

Problem Analysis Experiences

Feasibility study of alternative solutions
Specifying the requirements for a problem
Analyzing the requirements of a problem

Solution Design Experiences

Designing the solution to a problem		
Techniques to validate the problem solution		

The Coverage of Knowledge Units within Computer Science Body of Knowledge¹

Knowledge Unit	Topic	Lecture
		Hours
<u>AL</u>	Algorithms and Complexity	variable (1-3)
<u>AR</u>	Architecture and Organization	variable (1-3)
<u>IM</u>	Information Management	variable (1-3)
<u>NC</u>	Net-Centric Computing	variable (1-3)
<u>OS</u>	Operating Systems	variable (1-3)
<u>PL</u>	Programming Languages	variable (1-3)
<u>SE</u>	Software Engineering	variable (1-3)
<u>SP</u>	Social and Professional Issues	variable (1-3)

¹See https://www.acm.org/binaries/content/assets/education/cs2013 web final.pdf for a description of Computer Science Knowledge units